

SNS COLLEGE OF TECHNOLOGY, COIMBATORE-35

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST202-DATABASE MANAGEMENT SYSTEM

UNIT-III

Database Design

Topic: Armstrong Axioms of FD's

The term Armstrong axioms refer to the sound and complete set of inference rules or axioms, introduced by William W. Armstrong, that is used to test the logical implication of **functional dependencies**. If F is a set of functional dependencies then the closure of F, denoted as F^+ , is the set of all functional dependencies logically implied by F. Armstrong's Axioms are a set of rules, that when applied repeatedly, generates a closure of functional dependencies.

Axioms -

1. Axiom of reflexivity -

If A is a set of attributes and B is subset of A, then A holds B . If $B\subseteq A$ then $A\to B$ This property is trivial property.

2. Axiom of augmentation -

If A o B holds and Y is attribute set, then AY o BY also holds. That is adding attributes in dependencies, does not change the basic dependencies. If A o B, then AC o BC for any C.

3. Axiom of transitivity -

Same as the transitive rule in algebra, if A o B holds and B o C holds, then A o C also holds. A o B is called as A functionally that determines B. If X o Y and Y o Z, then X o Z

Secondary Rules -

These rules can be derived from the above axioms.

1. Union -

If
$$A \to B$$
 holds and $A \to C$ holds, then $A \to BC$ holds. If $X \to Y$ and $X \to Z$ then $X \to YZ$

2. Composition -

If
$$A o B$$
 and $X o Y$ holds, then $AX o BY$ holds.

3. Decomposition -

If
$$A \to BC$$
 holds then $A \to B$ and $A \to C$ hold. If $X \to YZ$ then $X \to Y$ and $X \to Z$

4. Pseudo Transitivity -

If
$$A \to B$$
 holds and $BC \to D$ holds, then $AC \to D$ holds. If $X \to Y$ and $YZ \to W$ then $XZ \to W$.

Why armstrong axioms refer to the Sound and Complete?

By sound, we mean that given a set of functional dependencies F specified on a relation schema R, any dependency that we can infer from F by using the primary rules of Armstrong axioms holds in every relation state r of R that satisfies the dependencies in F.

Secondary Rules

1. Decomposition

If $A \rightarrow BC$, then $A \rightarrow B$ and $A \rightarrow C$

Proof:

$$A \rightarrow BC \text{ (given)}$$
 (i)

A→B (transitivity from i and ii)

2. Composition

If $A \rightarrow B$ and $C \rightarrow D$ then $AC \rightarrow BD$	
Proof	
A→B	(i)
C→D	(ii)
AC→BC	(iii) (Augmentation of i and C)
AC→B	(iv) Decomposition of iii)
AC→AD	(v) (Augmentation of ii and A)
AC→D	(vi) (Decomposition of v)
AC→BD	(Union iv and vi)
Union (Notation)	
If $A \rightarrow B$ and $A \rightarrow C$ then $A \rightarrow BC$	
Proof	
A→B	(i) (given)
A->C	_(ii) (given)
A→AC	(iii) (Augmentation of ii and A)
AC→BC	(iv) (Augmentation of i and C)
A→BC	(transitivity of iii and ii)
4. Pseudo transitivity	
If $A \rightarrow B$ and $BC \rightarrow D$ then $AC \rightarrow D$	
Proof	
A→B	(i) (Given)
BC→D	(ii) (Given)
AC→BC	(iii) (Augmentation of i and C)

AC →D_____(Transitivity of iii and ii)

Self-determination

 $A \rightarrow A$ for any given A.

This rule directly follows the Axiom of Reflexivity.

6. Extensivity

Extensivity is a particular case of augmentation where C=A

If $A \rightarrow B$, then $A \rightarrow AB$

In the sense that augmentation can be proven from extensivity and other axioms, extensivity can replace augmentation as an axiom.

Proof

$$ABC \rightarrow BC_{\underline{\underline{\underline{\underline{}}}}}(v)$$
 (Reflexivity)

 $AC \rightarrow BC$ (Transitivity of iv and v)