

SNS COLLEGE OF TECHNOLOGY

Coimbatore-35 An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AEROSPACE ENGINEERING

19ASZ301– ROBOTICS & AUTOMATION IN SPACE

III YEAR VI SEM

UNIT 3 – MOTION CONTROL AUTOMATION

TOPIC - Selection of Motors for Automation

CLASSFICATION OF MOTORS

				Motor Type	Use Case & Features	Applications
				Output: A Constant Sector Motor	Reliable, robust, low-cost	Fans, pumps, conveyors (constant speed)
DC Motor BLDC Motor	bc Gear Motor	RC Servo motor	Stepper motor Linear electric actuator	DC Motor	Speed control, simple, high torque	AGVs, actuators, light-duty drives
				Stepper Motor	Precise steps, open-loop control	3D printers, CNC, pick & place
				Servo Motor	High precision + feedback (closed-loop)	Robotics, CNC machines, automation arms
				🎸 BLDC Motor	Efficient, quiet, high-speed control	Drones, electric vehicles, compact robots
				🚄 Linear Motor	Direct linear motion without rotation	Actuators, transport lines, pick & place
				🔨 Torque Motor	High torque at low speeds	Indexing tables, direct-drive systems

MOTION CONTROL AUTOMATION/19ASZ301 ROBOTICS AND AUTOMATION IN SPACE/RAMESH M/AERO/SNSCT

PROCESS

MOTION CONTROL AUTOMATION/19ASZ301 ROBOTICS AND AUTOMATION IN SPACE/RAMESH M/AERO/SNSCT

Step-by-Step Motor Selection Process

V Step 1: Define Application Requirements

- Load (static & dynamic)
- Required motion profile
- Speed and acceleration

Step 2: Calculate Load Torque and Speed

- Use formulas for rotational or linear systems:
 - Torque (T) = Force \times Radius
 - \circ Speed (RPM) = Linear speed \times 60 / (2 π \times Radius)
- **Step 3: Choose Motor Type**
 - High precision? \rightarrow Servo or stepper
 - Simple motion? \rightarrow AC or DC motor
 - High efficiency and low noise? \rightarrow BLDC
 - Linear motion needed? \rightarrow Linear motor

Step 5: Select Drive/Controller

Q Example: Selecting Motor for Conveyor Belt

- Load: 20 kg
- Speed: 30 m/min
- Duty cycle: Continuous
- **Suggested motor:**

Step 4: Determine Control Method • Open-loop (simple, cheaper): Stepper, AC motor • Closed-loop (accurate, safer): Servo, BLDC with encoder

• Compatible with motor type and system logic • Supports required communication (EtherCAT, Modbus, etc.)

• Control: Basic ON/OFF with variable speed • AC induction motor with VFD (variable frequency drive)

Thank You

MOTION CONTROL AUTOMATION/19ASZ301 ROBOTICS AND AUTOMATION IN SPACE/RAMESH M/AERO/SNSCT

