

SNS COLLEGE OF TECHNOLOGY

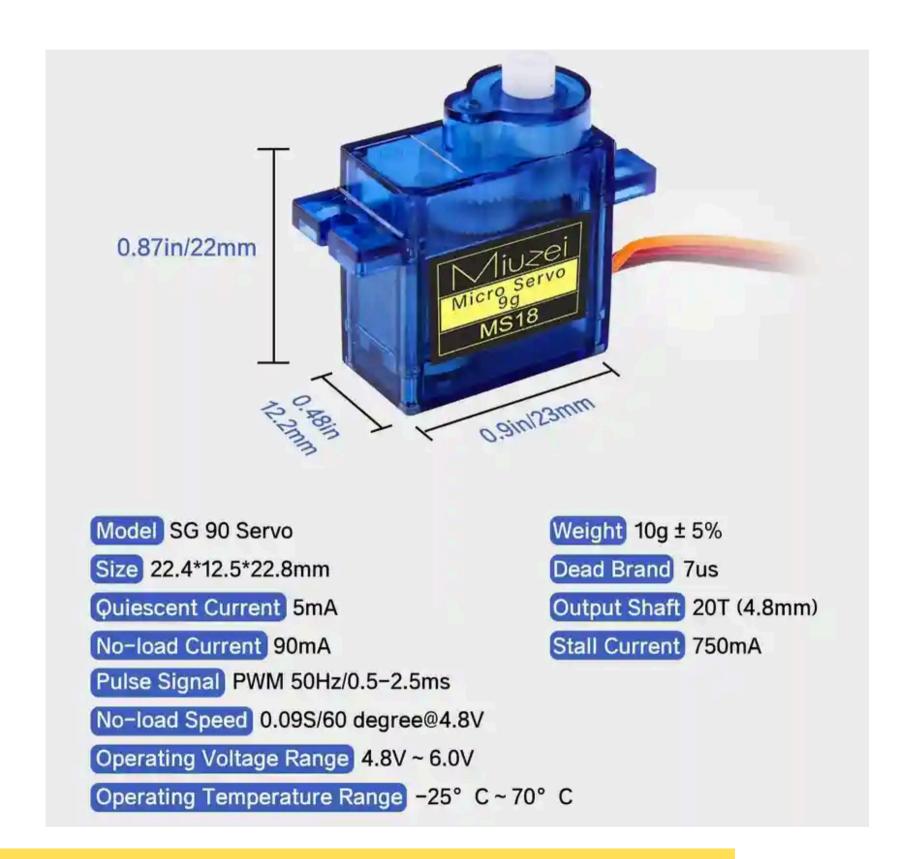
Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A+' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AEROSPACE ENGINEERING

19ASZ301– ROBOTICS & AUTOMATION IN SPACE

III YEAR VI SEM


UNIT 3 – MOTION CONTROL AUTOMATION

TOPIC - Sizing of Servo motor for Specific Applications

SERVO MOTOR

SIZING OF SERVOS

Continuous rotation servo size comparison. From left to right: SpringRC SM-S4303R, Power HD AR-3606HB, FEETECH FS5106R, Parallax Feedback 360°, Parallax (Futaba S148), and FEETECH FS90R.

	6 V		4.8 V						
	Max speed (RPM)	Stall torque (oz·in)	Max speed (RPM)	Stall torque (oz·in)	Weight (g)	Size (mm)	Digital?	Feedback?	Price
SpringRC SM-S4303R	54	71	43	46	41	41.3 × 20.7 × 40.2			\$12.95
PowerHD AR-3606HB	71	93	62	83	40	40.5 × 20.0 × 38.0			\$14.95
FEETECH FS5106R	95	83	78	70	39	40.8 × 20.1 × 38.0			\$13.95
Parallax Feedback 360°	140	35	_	_	41	40.0 × 20.0 × 37.2	✓	✓	\$27.99
FEETECH FT90R	170	21	135	18	9	22.9 × 12.1 × 26.5	✓		\$7.95
FEETECH FS90R	130	21	100	18	9	23.2 × 12.5 × 22.0			\$4.95

SELECTION PROCESS OF SERVOS

✓ 1. Define the Robotic Application

Examples:

- Robotic arm joint
- Pick-and-place actuator
- Precision gripper rotation
- Mobile base drive

Each application will have:

- Load characteristics
- Motion profiles
- Torque and speed needs

2. Determine Load Parameters

- a. Mass or Inertia (J₁)
 - Rotational load \rightarrow Moment of inertia (kg·m²)
 - Linear load \rightarrow Equivalent inertia = Mass \times (Radius)²
- b. Load Center Distance
 - Affects torque due to arm length:
 - $T = F \times d$ where d is distance from rotation axis

✓ 3. Define Motion Profile

Determine:

- Required acceleration (a)
- Required velocity (ω)
- Travel distance or rotation angle (θ)
- Dwell times and number of cycles

✓ 4. Calculate Torque Requirements

a. Acceleration Torque (T_a)

Ta=Jtotal $\times \alpha$ Where:

- Jtotal=Jload+Jmotor+Jgear
- α=ΔωΔt

b. Friction Torque (Tf)

Based on sliding surfaces, estimated or measured.

c. Gravitational Torque (Tg)

For vertical movement:

Tg=m×g×r Total Required Torque

Ttotal=Ta+Tf+Tg

✓ 5. Determine Required Speed

 $\omega = 2\pi \times RPM60$

 ω =602 π ×RPMUse required movement time to find peak and continuous speeds.

✓ 6. Check Duty Cycle

Define how often the servo runs vs. rests. This affects thermal sizing and continuous torque ratings.

✓ 7. Apply Safety Factor

Usually:

- $1.5 \times$ to $2 \times$ safety margin on torque
- Helps handle unexpected loads, misalignment, or wear

Thank You