
Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 5 Page 1 of 2

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with ‘A++’ Grade (Cycle III) &

Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT)

COIMBATORE-641 035, TAMIL NADU

UNIT V – Physical Storage and MongoDB

Data Storage and Indexes – RAID- File organization-Indexing and Hashing –Ordered

Indices – B+ tree Index Files – B tree Index Files – Static Hashing – Dynamic Hashing.

Query Processing Overview-Algorithms for Selection and Sorting Basics of MongoDB,

Procedural Language

B Tree Index Files

An m-way tree that self-balances itself is called a "B-tree." Due to their balanced structure,

such trees are frequently used to manage and organize enormous databases and facilitate

searches. In a B-tree, each node can have a maximum of m child nodes.

Definition of B-tree

B-tree in DBMS is an m-way tree that balances itself. Due to their balanced structure, such

trees are frequently used to manage and organize enormous databases and facilitate

searches. In a B-tree, each node can have a maximum of n child nodes. In DBMS, B-tree is

an example of multilevel indexing. Leaf nodes and internal nodes will both have record

references. B-Tree is called a Balanced stored tree as all the leaf nodes are at the same

levels.

Properties of B-tree

 A non-leaf node's number of keys is one less than the number of its children.

 The number of keys in the root ranges from one to (m-1) maximum. Therefore, the

root has a minimum of two and a maximum of m children.

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 5 Page 2 of 2

 The keys range from min([m/2]-1) to max(m-1) for all nodes (non-leaf nodes)

besides the root. Thus, they can have between m and [m/2] children.

 The level of each leaf node is the same.

Need of B-tree

 For having optimized searching we cannot increase a tree's height. Therefore, we

want the tree to be as short as possible in height.

 Use of B-tree in DBMS, which has more branches and hence shorter height, is the

solution to this problem. Access time decreases as branching and depth grow.

 Hence, use of B-tree is needed for storing data as searching and accessing time is

decreased.

 The cost of accessing the disc is high when searching tables Therefore, minimizing

disc access is our goal.

 So to decrease time and cost, we use B-tree for storing data as it makes the Index

Fast.

How Database B-Tree Indexing Works

 When B-tree is used for database indexing, it becomes a little more

complex because it has both a key and a value. The value serves as a reference to

the particular data record. A payload is the collective term for the key and value.

 For index data to a particular key and value, the database ϐirst constructs a unique

random index or a primary key for each of the supplied records. The keys and

record byte streams are then all stored on a B+ tree. The random index that is

generated is used for indexing of the data.

 So this indexing helps to decrease the searching time of data. In a B-tree, all the

data is stored on the leaf nodes, now for accessing a particular data index, the

database can make use of binary search on the leaf nodes as the data is stored in

the sorted order.

 If indexing is not used, the database reads each and every record to locate the

requested record and it increases time and cost for searching the records, so B-

tree indexing is very efϐicient.

