
Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 5 Page 1 of 2

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with ‘A++’ Grade (Cycle III) &

Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT)

COIMBATORE-641 035, TAMIL NADU

UNIT V – Physical Storage and MongoDB

Data Storage and Indexes – RAID- File organization-Indexing and Hashing –Ordered

Indices – B+ tree Index Files – B tree Index Files – Static Hashing – Dynamic Hashing.

Query Processing Overview-Algorithms for Selection and Sorting Basics of MongoDB,

Procedural Language

B Tree Index Files

An m-way tree that self-balances itself is called a "B-tree." Due to their balanced structure,

such trees are frequently used to manage and organize enormous databases and facilitate

searches. In a B-tree, each node can have a maximum of m child nodes.

Definition of B-tree

B-tree in DBMS is an m-way tree that balances itself. Due to their balanced structure, such

trees are frequently used to manage and organize enormous databases and facilitate

searches. In a B-tree, each node can have a maximum of n child nodes. In DBMS, B-tree is

an example of multilevel indexing. Leaf nodes and internal nodes will both have record

references. B-Tree is called a Balanced stored tree as all the leaf nodes are at the same

levels.

Properties of B-tree

 A non-leaf node's number of keys is one less than the number of its children.

 The number of keys in the root ranges from one to (m-1) maximum. Therefore, the

root has a minimum of two and a maximum of m children.

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 5 Page 2 of 2

 The keys range from min([m/2]-1) to max(m-1) for all nodes (non-leaf nodes)

besides the root. Thus, they can have between m and [m/2] children.

 The level of each leaf node is the same.

Need of B-tree

 For having optimized searching we cannot increase a tree's height. Therefore, we

want the tree to be as short as possible in height.

 Use of B-tree in DBMS, which has more branches and hence shorter height, is the

solution to this problem. Access time decreases as branching and depth grow.

 Hence, use of B-tree is needed for storing data as searching and accessing time is

decreased.

 The cost of accessing the disc is high when searching tables Therefore, minimizing

disc access is our goal.

 So to decrease time and cost, we use B-tree for storing data as it makes the Index

Fast.

How Database B-Tree Indexing Works

 When B-tree is used for database indexing, it becomes a little more

complex because it has both a key and a value. The value serves as a reference to

the particular data record. A payload is the collective term for the key and value.

 For index data to a particular key and value, the database ϐirst constructs a unique

random index or a primary key for each of the supplied records. The keys and

record byte streams are then all stored on a B+ tree. The random index that is

generated is used for indexing of the data.

 So this indexing helps to decrease the searching time of data. In a B-tree, all the

data is stored on the leaf nodes, now for accessing a particular data index, the

database can make use of binary search on the leaf nodes as the data is stored in

the sorted order.

 If indexing is not used, the database reads each and every record to locate the

requested record and it increases time and cost for searching the records, so B-

tree indexing is very efϐicient.

