
Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 5 Page 1 of 3

SNS COLLEGE OF TECHNOLOGY
(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai
Accredited by NAAC-UGC with ‘A++’ Grade (Cycle III) &

Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT)

COIMBATORE-641 035, TAMIL NADU

UNIT V – Physical Storage and MongoDB

Data Storage and Indexes – RAID- File organization-Indexing and Hashing –Ordered

Indices – B+ tree Index Files – B tree Index Files – Static Hashing – Dynamic Hashing.

Query Processing Overview-Algorithms for Selection and Sorting Basics of MongoDB,

Procedural Language

Algorithms for Selection and Sorting Basics of MongoDB

Sorting documents in MongoDB is the process of arranging data in a speciϐic order based

on ϐield values, enhancing the efϐiciency and readability of query results.

Sorting

 Sorting documents in MongoDB refers to the process of arranging the documents

in a speciϐied order based on the values of one or more ϐields.

 This is typically done to make data retrieval more efϐicient and the resulting data

set more useful and readable. MongoDB provides the sort() method to perform

this operation, allowing users to specify the sort order as ascending (1)

or descending (-1).

Syntax : db.Collection_name.sort({ϐield_name : 1 or -1})

 Parameter: This method takes a document that contains a ϐield: value pair. If the

value of this ϐield is 1 then this method sorts the documents in ascending order,

or if the value of this ϐield is -1 then this method sorts the documents in

descending order.

 Return: This method return sorted documents.

Example : Return all the documents in ascending order of the age

db.student.ϐind().sort({age:1})

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 5 Page 2 of 3

Sorting embedded documents

Syntax : db.Collection_name.sort({“ϐield_name.embed_ϐield_name” : 1 or -1})

Sort documents in ascending order according to the total ϐield of the marks
document:

db.student.ϐind().pretty().sort({"marks.total":1})

Sorting Multiple Documents

Syntax: db.teacher.ϐind().pretty().sort({subject:1, age:1})

Searching

MongoDB Text Search allows searching for speciϐic text values in documents stored
within a collection. When we perform a text search query always remember that our
collection must contain a text index and a collection can only contain one text index but
this single text index covers multiple ϐields. To create a text index in MongoDB use
the createIndex() method.

 Text indexes must be created on ϐields that store strings or arrays of strings.

 A collection can have only one text index, but this index can cover multiple ϐields.

 MongoDB’s text search ignores case and diacritics unless speciϐied otherwise.

Syntax: db.collectionName.createIndex({ ϐield: “text” })

Syntax:

$text:
{
 $search: <string>, $language: <string>, $caseSensitive: <boolean>,
 $diacriticSensitive: <boolean>
}

Ms A Aruna / AP/ IT/23CST201 Database Management Systems/ Semester 04/Unit 5 Page 3 of 3

Key Terms

 $search – The text to search for.

 $language – (Optional) Speciϐies the language for tokenization.

 $caseSensitive – (Optional) Enables case-sensitive search.

 $diacriticSensitive – (Optional) Enables diacritic-sensitive search.

Create a Collection and Insert Documents

Create Index

Search

db.content.ϐind({$text:{$search:"love"}})

