

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore-641035.

UNIT-IV COMPLEX INTEGRATION

TAYLOR'S SERIES

UNIT-I	V COMPLEX INTEGRATION	TAYLOR'S SERIES
	Taylor's series:	1911 7 4 80 . 1 . 1
	A function fix) by analytic Poside a circle c' with centre at a can be expressed for the series $f(z) = f(a) + \frac{z-a}{z} f'(a) + \frac{(z-a)^3}{z!}$	
	every point inside 'c'	- 27 1
	Note: If a = 0, then	CR-TIFY
	$f(z) = f(0) + \frac{z}{1!} f'(0) + \frac{z^2}{2!} f''$	(0) + z3 f 111(0) +, which
	B called as maclauren	series.
D	Expand f(z) = log(1+z) as taylor's serves about	
	301112	$f(0) = \log(1+0) = \log 1 = 0$
	$\frac{1}{1+z} = \frac{1}{1+z}$	$f'(0) = \frac{1}{1+0} = 1$
		$f''(0) = \frac{-1}{(1+0)^2} = -1$
	$\sqrt{y''(z)} = \frac{2}{(1+x)^2}$	$f''(co) = \frac{2}{(1+o)^3} = 2$

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore-641035.

UNIT-IV COMPLEX INTEGRATION

TAYLOR'S SERIES

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
Coimbatore-641035.

UNIT-IV COMPLEX INTEGRATION

TAYLOR'S SERIES