

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore-35

DEPARTMENT OF BIOMEDICAL ENGINEERING

19BMB303 & Fundamentals of Microprocessors and Microcontrollers

Unit V - 32- BIT ARM PROCESSOR

III Year/ VI Sem

Dr. K. Manoharan, ASP / BME / SNSCT

MICROCONTROLLER BASED SYSTEM DESIGN

Reduced Instruction Set Computer Design Physiology RISC Vs CISC Architecture ARM Processor Architecture ARM Core data flow model, Barrel Shifter ARM processor modes and families Pipelining ARM instruction Set and its Programming Pulse oximeter using ARM processor

ARM processor modes and families

ARM processor modes and families

ARM7 supports **7 processor modes**, including:

- User Normal program execution
- FIQ Fast interrupt
- IRQ Standard interrupt
- **Supervisor** OS mode
- **Abort** For memory access violations
- Undefined For undefined instructions
- System Privileged user mode (used by OS)

ARM processor modes and families

Family	Highlights	Examples	INSTITUTIO
ARM7	First popular ARM core. Simple, low power, supports ARMv4T.	ARM7TDMI	
ARM9	Faster than ARM7, separate instruction and data caches.	ARM926EJ-S	
ARM11	First to support SIMD (media instructions), better branch prediction.	ARM1176JZ-S (used in early Raspberry Pi)	
Cortex-M	For microcontrollers (embedded systems). Optimized for real-time, low-power tasks.	Cortex-M0, M3, M4, M7, M33	3
Cortex-R	Real-time processors for safety-critical systems (automotive, medical).	Cortex-R4, R5, R7	
Cortex-A	High-performance apps processors (for smartphones, tablets).	Cortex-A5, A7, A53, A72, A76	
Neoverse	For cloud and server applications.	Neoverse N1, V1	
ARMv8	Introduced 64-bit support (AArch64) while still supporting 32-bit (AArch32).	Cortex-A53, A57, A72, A76	
ARMv9	Latest generation: better security (Confidential Compute Architecture), AI, and performance.	Cortex-X2, Cortex-A710	

19BMB303 & Fundamentals of Microprocessors and Microcontrollers / Dr. K. Manoharan, ASP / BME / SNSCT

9