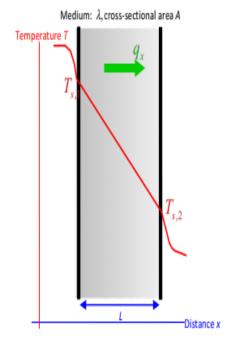
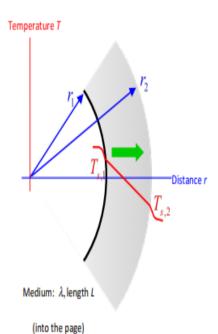


DEPARTMENT OF MECHANICAL ENGINEERING, 19MEB302/ Heat and Mass Transfer — **UNIT IV- RADIATION**


Topic - Electrical Analogy


Recall from circuit theory that resistance R_{elec} across an element is defined as the ratio of electric potential difference ΔV across that element, to electric current I traveling through that element, according to Ohm's law,

$$R_{elec} = \frac{V}{I} \tag{3.1}$$

Within the context of heat transfer, the respective analogues of electric potential and current are temperature difference ΔT and heat rate q, respectively. Thus we can establish "thermal circuits" if we similarly establish thermal resistances R according to

$$R = \frac{\Delta T}{q} \tag{3.2}$$

DEPARTMENT OF MECHANICAL ENGINEERING, 19MEB302/ Heat and Mass Transfer — **UNIT IV- RADIATION**

Topic - Electrical Analogy

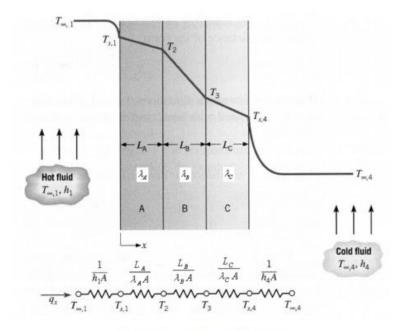


Figure 3.2: Layered planar wall.

DEPARTMENT OF MECHANICAL ENGINEERING, 19MEB302/ Heat and Mass Transfer — **UNIT IV- RADIATION**

Topic - Electrical Analogy

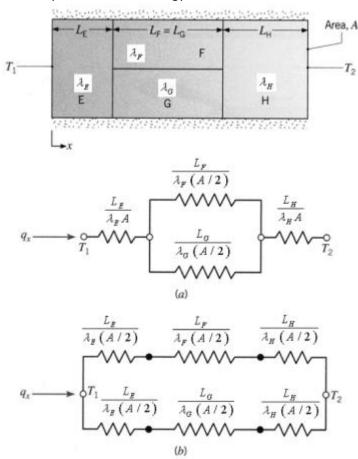


Figure 3.3: Parallel conduction network.

DEPARTMENT OF MECHANICAL ENGINEERING, 19MEB302/ Heat and Mass Transfer – **UNIT IV- RADIATION**

Topic - Electrical Analogy

References:

- 1. Kothandaraman C.P "Fundamentals of Heat and Mass Transfer" New Age International, New Delhi,4th Edition 2012 (Unit I, II, III, IV, V).
- 2. Frank P. Incropera and David P. DeWitt, "Fundamentals of Heat and Mass Transfer", John Wiley and Sons, New Jersey,6th Edition1998(Unit I,II,III,IV, V)
- $\textbf{3.} \quad \textbf{MIT open courseware} \underline{\textbf{https://ocw.mit.edu/courses/mechanical-engineering}}$

Other web sources