
SNS COLLEGE OF TECHNOLOGY

Department of Mechanical Engineering

SNS COLLEGE OF TECHNOLOGY

Department of Mechanical Engineering

Two Dimensional Problems

Formulae used

1. For constant strain triangle (csr) dement

Shape function, N, + N2 + N3 = 1

Co-ordinale, x = N, x, + N2 x2 + N3 x3

Co-ordinate, y = N, y, + N2 y2 + N3 y3

(DO)

Co-ordinale, 7 = (x1-73) N, + (x2-73) N2 + 23

co-ordinate, y = (4,-43) N,+ (42-43) N2 + 43

2. A rea of the triangular element, $A = \frac{1}{2}$ $\begin{vmatrix} 1 & x_1 & y_1 \\ 1 & x_2 & y_2 \\ 1 & x_3 & y_3 \end{vmatrix}$

3. Strain- Displacement matrix for CST element is,

 $\begin{bmatrix} BJ = \frac{1}{2A} \\ 0 & 7, & 0 & 9_2 & 0 & 9_3 & 0 \\ 0 & 7, & 0 & 7_2 & 0 & 7_3 \\ 7, & 9_1 & 7_2 & 9_2 & 8_3 & 9_3 \end{bmatrix}$

where, $q_1 = y_2 - y_3$, $q_2 = y_3 - y$, $q_3 = y_1 - y_2$. $r_1 = x_3 - x_2$; $r_2 = x_1 - x_3$; $r_3 = x_2 - x$,

4. Stress-Strain relationship matrix for Plane Stress Problem,

$$[D] = \frac{E}{1-v^2} \begin{bmatrix} 1 & v & 0 \\ v & 1 & 0 \\ 0 & 0 & \frac{1-v}{2} \end{bmatrix}$$

where, v = Poison's ratio

E > going's modulus.

SNS COLLEGE OF TECHNOLOGY

Department of Mechanical Engineering

Streps- Strain relationship matrix for Plane strain Problem

$$[D] = \frac{E}{(1+v)(1-2v)} \begin{bmatrix} 1-v & v & 0 \\ v & 1-v & 0 \\ 0 & 0 & \frac{1-2v}{2} \end{bmatrix}$$

6. Element Stiffness malrix for cst Element,

7. Elamory Str 085, {6-3 = [3] [8] [u]

$$\begin{cases} \nabla x \\ \nabla y \\ \nabla y \\ \nabla z \\ \nabla$$

8. Maximum normal Streps, oman = 0, = 5x+5y (5x-5y)2+ Try

Minimum normal stress, omin = 02 = oxtoy - (ox-oy)2 + This

9. Principle anagle tan
$$209 = \frac{2 \text{ Try}}{5 \times 5 \text{ y}}$$

(For Plane Strain Problems) = (ITV) of LDT?

d > co-efficient of Thermal expansion V-) Poisson's ratio.

Element temperature force, &F3 = [B] [D] {eo} + A