SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - V DESIGN OF EXPERIMENTS

Problem

An experiment was designed to study the performance 0 of 4 different detergenes for cleaning of injectors The following " cleanliness" Acadings were obtained with specially designed equipment for 12 tanks of gas distributed over 3 different models of engines.

			C in Z	Total
Detergent	Engine 1	Engine 2	Engine 3	
A	45	43	51	139
B	47	46	52	145
c	48	50	55	153
Ð	42	37	49	128
Total	182	176	207	565
	1012		<u> </u>	

Perform the ANOVA test at 0.01 level of significance whether there are differences in the detergents or in the engines.

Solution :

Fix origin = 50. Subtract each element

Engine	×,	X ₂	×3	Total	x,²	X22	X32
A (Y,)	- 5	-7	+1	-11	25	49	1
B (y2)	- 3	- 4	2	-5	9	16	4
C (Y3)	- 2	0	5	3	4	0	25
2 (94)	- 8	-13	-1	-22	64	169	1
Total	- 18	- 24	7	- 35	102	234	31

from so .

23MAT206 - PROBABILITY AND STATISTICS

DEPARTMENT OF MATHEMATICS

Page10F2

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Coimbatore – 35

DEPARTMENT OF MATHEMATICS

UNIT - V DESIGN OF EXPERIMENTS

Step 1: Null hypothesis
$$H_0$$
: There is no Significant
difference between engines and detergents.
Attendive hypothesic H_1 : There is a significant
difference between engines and detergents
Step 2: $\overrightarrow{X} = 12$.
 $T = -35$
 $C \cdot F = T^2/N = 102 \cdot 08$
Step 3: $SST = \Sigma X_1^2 + \Sigma X_2^2 + \Sigma X_3^2 - C \cdot F$
 $\equiv 102 + 234 + 31 - 102 \cdot 08$
 $\boxed{SST = 264 \cdot 92}$
 $SSC = (\underline{SX_1}^2 + (\underline{SX_2})^2 + (\underline{SX_3})^2 - C \cdot F$
 $= (-18)^2 + (-24)^2 + \frac{7}{4} - 102 \cdot 08$
 $\boxed{SSC = 135 \cdot 17}$
 $SSR = (\underline{Sy_1}^2 + (\underline{Sy_2})^2 + (\underline{Sy_3})^2 + (\underline{Sy_4})^2 - C \cdot F$
 $= (-11)^2 + (-5)^2 + \frac{3^2}{3} + (-22)^2 - 102 \cdot 08$
 $\boxed{SSF = 10 \cdot 91}$
 $SSF = TSS - SSC - SSR = 264 \cdot 92 - 135 \cdot 17 - 110 \cdot 91$
 $\boxed{SSF = 18 \cdot 84}$

Stepy : ANOVA table :

Source of Vasiation	Degree of Preedom	Sum of Squares	Mean Sum of Squares	Variance Vatio	Table Valu
Between Columns	(-1 = 3 - 1) = 2	SSC = 135.17	$MSC = \frac{SSC}{C-1}$ = 67.585	Fe = MSC MSE	Far(2, 6) = 10.92
Between rows	r-1=4-1 = 3	SSE = 110.91	MSR - 95R	$= \frac{1}{5a}$ $F_R = \frac{MSR}{5c}$	F2 (3.6)
Between easons	((-1)(7-1)	SSE = 18.84	MSE - SSE = 3.9	#SE # 11-77	= 9.78