
OPTIMIZATION IN DEEP LEARNING 

 

In machine learning, optimizers and loss functions are two fundamental components that help improve a 

model’s performance. 

● A loss function evaluates a model's effectiveness by computing the difference between 

expected and actual outputs. Common loss functions include log loss, hinge loss, and mean 

square loss. 

● An optimizer improves the model by adjusting its parameters (weights and biases) to minimize 

the loss function value. Examples include RMSProp, ADAM, and SGD (Stochastic Gradient 

Descent). 

The optimizer’s role is to find the best combination of weights and biases that leads to the most accurate 

predictions. 

Gradient Descent 

Gradient Descent is a popular optimization method for training machine learning models. It works by 

iteratively adjusting the model parameters in the direction that minimizes the loss function. 

Key Steps in Gradient Descent 

1. Initialize parameters: Randomly initialize the model parameters. 

2. Compute the gradient: Calculate the gradient (derivative) of the loss function with respect to 

the parameters. 

3. Update parameters: Adjust the parameters by moving in the opposite direction of the gradient, 

scaled by the learning rate. 

Formula : 

θ(k+1)=θk−α∇J(θk) 

Gradient Descent with Armijo Goldstein Condition 

This variant ensures that the step size is large enough to effectively reduce the objective function, using a 

line search that satisfies the Armijo condition. 

Condition: 

f(xt−1+α∇f(xt−1))−f(xt−1)≥cα∣∣∇f(xt−1)∣∣2 

Gradient Descent with Armijo Full Relaxation Condition 

Incorporates both first and second derivatives (Hessian matrix) to determine a more optimal step size for 

the update. 

https://www.geeksforgeeks.org/gradient-descent-algorithm-and-its-variants/


Condition: 

f(xt−1+α∇f(xt−1))−f(xt−1)≥cα∣∣∇f(xt−1)∣∣2+b2α2∇f(xt−1)TH(x)∇f(xt−1) 

 

Variants of Gradient Descent 

1. Stochastic Gradient Descent (SGD) 

Stochastic Gradient Descent (SGD) updates the model parameters after each training example, making it 

more efficient for large datasets compared to traditional Gradient Descent, which uses the entire dataset 

for each update. 

Steps: 

1. Select a training example. 

2. Compute the gradient of the loss function. 

3. Update the model parameters. 

● Advantages: Requires less memory and may find new minima. 

● Disadvantages: Noisier, requiring more iterations to converge. 

2. Mini Batch Stochastic Gradient Descent 

Mini-batch stochastic gradient descent consists of a predetermined number of training examples, smaller 

than the full dataset. This approach combines the advantages of the previously mentioned variants. In one 

epoch, following the creation of fixed-size mini-batches, we execute the following steps: 

1. Select a mini-batch. 

2. Compute the mean gradient of the mini-batch. 

3. Apply the mean gradient obtained in step 2 to update the model's weights. 

4. Repeat steps 1 to 2 for all the mini-batches that have been created. 

● Advantages: Requires medium amount of memory and less time required to converge when 

compared to SGD 

● Disadvantage: May get stuck at local minima 

3. SGD with Momentum 

Momentum helps accelerate convergence by smoothing out the noisy gradients of SGD, thus reducing 

fluctuations and improving the speed of convergence. 

v(t+1)=β∗vt+(1−β)∗∇J(θt) 

https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
https://www.geeksforgeeks.org/ml-mini-batch-gradient-descent-with-python/


 

Then, the model parameters are updated using: 

θ(t+1)=θt−α∗v(t+1) 

 

● Advantages: Mitigates oscillations, reduces variance, and faster convergence. 

● Disadvantages: Requires tuning the momentum coefficient  

● β 

Advanced Optimizers 

1. AdaGrad 

AdaGrad adapts the learning rate for each parameter based on the historical gradient information. The 

learning rate decreases over time, making AdaGrad effective for sparse features. 

θ(t+1)=θt−αGt+ε∗∇J(θt) 

Where: 

● Gt is the sum of squared gradients. 

● ε is a small constant to avoid division by zero. 

● Advantages: Adapts the learning rate, improving training efficiency. 

● Disadvantages: Learning rate decays too quickly, causing slow convergence. 

2. RMSProp 

RMSProp improves upon AdaGrad by introducing a decay factor to prevent the learning rate from 

decreasing too rapidly. 

E[g2]t=γ∗E[g2](t−1)+(1−γ)∗(∇J(θt))2 

θ(t+1)=θt−αE[g2]t+ε∗∇J(θt) 

Where: 

● γ is the decay rate. 

● E[g2]t is the exponentially moving average of squared gradients. 

● Advantages: Prevents excessive decay of learning rates. 

● Disadvantages: Computationally expensive due to the additional parameter. 

3. Adam (Adaptive Moment Estimation) 

https://www.geeksforgeeks.org/intuition-behind-adagrad-optimizer/
https://www.geeksforgeeks.org/rmsprop-optimizer-in-deep-learning/


Adam combines the advantages of Momentum and RMSProp. It uses both the first moment (mean) and 

second moment (variance) of gradients to adapt the learning rate for each parameter. 

1. Update the first moment:  

2. mt=β1∗m(t−1)+(1−β1)∗∇J(θt) 

3. Update the second moment:  

4. vt=β2∗v(t−1)+(1−β2)∗(∇J(θt))2 

Where: 

●  are the decay rates for the first and second moments. 

● ε is a small constant to prevent division by zero. 

● Advantages: Fast convergence. 

● Disadvantages: Requires significant memory due to the need to store first and second moment 

estimates. 

 

Optimizer Advantages Disadvantages 

SGD Simple, easy to implement 
Slow convergence, requires 

tuning 

Mini-Batch SGD Faster than SGD 
Computationally expensive, 

stuck in local minima 

SGD with 

Momentum 

Faster convergence, 

reduces noise 
Requires careful tuning of βββ 

https://www.geeksforgeeks.org/adam-optimizer/


AdaGrad Adaptive learning rates 
Decays too fast, slow 

convergence 

RMSProp 
Prevents fast decay of 

learning rates 
Computationally expensive 

Adam 
Fast, combines 

momentum and RMSProp 

Memory-intensive, 

computationally expensive 

 

Each optimizer has its own strengths and weaknesses. The choice of optimizer depends on the specific 

problem, dataset characteristics, and the computational resources available. Adam is often the default 

choice due to its robust performance, but each situation may call for a different optimizer to achieve 

optimal results. 

 

 

 

 

NON CONVEX OPTIMIZATION IN DEEP NETWORKS 

1. What Is Non-Convex Optimization? 

A function f(θ) is convex if for all θ1,θ2 and λ∈[0,1]: 

                                        f(λθ1+(1−λ)θ2)≤λf(θ1)+(1−λ)f(θ2) 

In contrast, non-convex functions violate this inequality, often having: 

● Multiple local minima 

● Saddle points 

● Flat regions 

 



In deep learning, the loss function L(θ) with respect to parameters θ (weights and biases) is typically non-

convex. 

2. Why Deep Networks Are Non-Convex 

A deep neural network is a composition of functions: 

f(x;θ)=f(L)(f(L−1)(…f(1)(x;θ1)… );θL) 

The loss function becomes: 

L(θ)=1n∑i=1nℓ(f(xi;θ),yi) 

Where: 

● ℓ: Loss function (e.g., cross-entropy, MSE) 

● xi,yix_i, y_ixi,yi: Data samples 

● θ: All model parameter 

 

Due to nonlinearities and hierarchical composition, L(θ) is non-convex. 

3. Optimization Landscape 

Deep networks have loss surfaces like: 

● Local minima: ∇L(θ∗)=0, and θ∗ is a minimum in a neighborhood. 

● Saddle points: ∇L(θ)=0, but Hessian has both positive and negative 

eigenvalues. 

● Plateaus: Gradient is near zero, but not a minimum. 

 

The Hessian matrix helps analyze this: 

H=∇2L(θ) 

Eigenvalues of HHH: 

● All positive → local minimum 

● All negative → local maximum 

● Mixed → saddle point 

 

4. Gradient-Based Methods in Non-Convex Optimization 



Despite non-convexity, we use gradient descent and its variants: 

Gradient Descent (GD): 

θt+1=θt−η∇L(θt) 

● η\etaη: Learning rate 

● ∇L(θ): Gradient 

 

Stochastic Gradient Descent (SGD): 

θt+1=θt−η∇L 

Use minibatches to estimate the gradient. Noise helps escape saddle points. 

Momentum: 

vt+1=γvt+η∇L(θt)θt+1=θt−vt+1 

● Helps move through flat/saddle regions. 

 

5. Strategies for Handling Non-Convexity 

Strategy Description 

Overparameterizatio

n 

Makes the loss surface smoother; many local minima become 

global-like. 

Batch Normalization Stabilizes training; reduces sharp curvature. 

Adaptive optimizers Like Adam, RMSProp adjust learning rates dynamically. 

Initialization Good weight initialization avoids bad minima (e.g., Xavier, He 

init). 

Loss smoothing Adding regularization helps (e.g., λ∥θ∥2\lambda \|\theta\|^2). 



6. Empirical Observation 

Despite non-convexity: 

● Many local minima generalize well. 

 

● Flat minima often yield better generalization than sharp minima. 

 

 

 

7. Summary Formula Table 

 

 

Concept Formula 

Loss Function L(θ)=1n∑i=1nℓ(f(xi;θ),yi) 

Gradient Descent θt+1=θt−η∇L(θt) 

Hessian Matrix H=∇2L(θ) 

Saddle Point 

(example) 

L(θ)=x2−y2⇒∇L=(2x,−2y) 

 

 

 

 

STOCHASTIC OPTIMIZATION AND GENERALISATION IN NEURAL 

NETWORK 

Stochastic optimization plays a crucial role in training deep neural networks, especially in achieving 

good generalization — the ability of the model to perform well on unseen data. Below is a detailed 

explanation with formulas and insights into how stochastic optimization affects generalization. 

1. What Is Stochastic Optimization? 

Stochastic Optimization (like SGD) approximates the full-batch gradient using small batches 

(minibatches): 

θt+1=θt−η∇θLB(θt) 



Where: 

● θ: Model parameters 

● η: Learning rate 

● LB(θt): Empirical loss on minibatch BBB 

 

The stochastic nature introduces noise, helping the model: 

● Escape sharp local minima or saddle points 

 

● Explore flatter regions that often generalize better 

 

2. Generalization: Formal Definition 

Given: 

● Training loss: 

 L^(θ)=n1i=1∑nℓ(f(xi;θ),yi) 

● True (expected) loss: 

 L(θ)=E(x,y)∼D[ℓ(f(x;θ),y)] 

Then the generalization gap is: 

GenGap(θ)=L(θ)−L^(θ) 

Good generalization implies a small generalization gap. 

3. Why SGD Helps Generalization 

A. Implicit Regularization 

● Unlike full-batch gradient descent, SGD does not converge exactly to the minimum of training 

loss. 

● The noise in updates acts like a regularizer, favoring flatter minima which are often associated 

with better generalization. 

 

Flat minima are defined as points in parameter space where small perturbations to weights do 

not significantly increase the loss. 

B. Escaping Sharp Minima 

A sharp minimum has a steep loss landscape (large Hessian eigenvalues), leading to poor generalization. 



Flat minimum example: 

∇2L(θ) has small eigenvalues 

SGD's noise helps the model avoid sharp minima by not "settling" too precisely. 

Property SGD Full-Batch Gradient Descent 

Update Type Noisy, per mini-batch Deterministic, all data 

Exploration High Low 

Regularization Effect Implicit Minimal 

Generalization Better Often worse 

5. SGD Generalization Theories 

A. Noise-Induced Generalization 

Noise in SGD behaves like annealed Langevin dynamics: 

θt+1=θt−η∇θLB(θt)+2ηT⋅N(0,I) 

This form resembles stochastic differential equations, where TTT is a "temperature" parameter. 

 B. PAC-Bayes Bounds 

Some generalization bounds (e.g., PAC-Bayes) show that flat minima imply tighter bounds on 

generalization error. 

 6. Practical Techniques That Help Generalization 

Technique Purpose 

Dropout Adds noise; prevents co-adaptation 



Data Augmentation Increases sample diversity 

Weight Decay Penalizes large weights 

Early Stopping Prevents overfitting 

Batch Normalization Stabilizes training, smooths 

landscape 

 7. Visualization Insight 

In a 2D loss surface: 

● Sharp minima look like steep pits. 

 

● Flat minima resemble wide valleys. 

 

SGD tends to land in wide valleys, helping the model generalize well. 

 

SUMMARY 

Aspect Explanation 

Stochastic 

Optimization 

Uses randomness to update weights, mainly via mini-batch 

gradients 

Generalization Ability to perform well on unseen data 

Key Benefit SGD’s noise drives the model toward flat minima that generalize 

better 



Theoretical Support Langevin dynamics, PAC-Bayes bounds, and Hessian spectrum 

analysis 

 

SPATIAL TRANSFORMER NETWORKS 

Spatial Transformer Networks (STNs) are neural network modules that allow the network to learn spatial 

transformations of the input data during training. Introduced by Jaderberg et al., 2015, STNs are 

differentiable modules that can be inserted into convolutional networks to provide spatial invariance. 

1. Why Use STNs? 

Traditional CNNs are limited in their ability to handle geometric variations such as: 

● Rotation 

● Scaling 

● Translation 

● Perspective changes 

STNs learn to spatially transform feature maps or input images to canonical forms, improving recognition 

accuracy and robustness. 

 

 2. STN Architecture Overview 

An STN has three key components: 

A. Localization Network 

● Learns the parameters θ\thetaθ of a spatial transformation. 

● Takes input feature map U∈RH×W×C 

● Outputs parameters for transformation, e.g., affine: 

 

θ=LocalizationNet(U) 

B. Grid Generator 

● Uses θ to produce a sampling grid of coordinates in the input image. 

● For an affine transformation: 

 

https://arxiv.org/abs/1506.02025
https://arxiv.org/abs/1506.02025


[xsys]=A[xtyt1],where A∈R2×3 

Here, (xt,yt)(x_t, y_t)(xt,yt) are target coordinates and (xs,ys)(x_s, y_s)(xs,ys) are the source coordinates. 

 C. Sampler 

● Samples the input feature map at grid locations using bilinear interpolation: 

Vic=n∑Hm∑WUnmcmax(0,1−∣xis−m∣)max(0,1−∣yis−n∣) 

Where: 

● UUU is the input feature map 

● VVV is the output transformed feature map 

 

 3. Affine Transformation Matrix 

The affine transform matrix used by the grid generator is: 

A=[θ11θ21θ12θ22θ13θ23] 

This can apply: 

● Translation 

● Rotation 

● Scaling 

● Shearing 

 4. Integration in CNNs 

STNs can be plugged anywhere in a CNN pipeline: 

Input → STN → Conv Layers → Classifier 

The transformation is learned via backpropagation—since all parts are differentiable. 

Feature Description 

Learned Invariance Learns to correct geometric distortions 

Modularity Can be added into existing architectures 

End-to-End Training Differentiable and trainable with rest of network 



Better Performance Especially on spatially distorted datasets (e.g., MNIST variants) 

 

 6. Use Cases 

● Handwritten digit recognition (rotated MNIST) 

● Scene text recognition 

● Fine-grained image classification 

● Object detection & localization 

 

RECURRENT NEURAL NETWORKS 

Recurrent Neural Networks (RNNs) are a class of neural networks designed to model sequential data such 

as time series, speech, or text. Unlike feedforward networks, RNNs have cyclic connections, allowing 

them to maintain a memory of previous inputs using hidden states. 

1. Basic RNN Architecture 

An RNN processes a sequence one step at a time, maintaining a hidden state that captures information 

from previous time steps. 

Forward Pass Equations: 

Given: 

● Input at time step ttt: xt 

 

● Hidden state at time step ttt: ht 

 

● Output at time step ttt: yt 

 

The basic RNN equations: 

ht=tanh⁡(Wxhxt+Whhht−1+bh) 

yt=Whyht+by 

Where: 

● Wxh: input-to-hidden weights 

 



● Whh: hidden-to-hidden weights 

 

● Why: hidden-to-output weights 

 

● bh,by: biases 

 

2. Unrolling an RNN 

An RNN over time can be visualized as a unrolled network: 

x_1 → [h_1] → y_1   

x_2 → [h_2] → y_2   

x_3 → [h_3] → y_3   

        ↑   

   (hidden state flows through time) 

The hidden state at each step depends on both the current input and the previous hidden state. 

3. Loss Function 

For a sequence of length TTT, the total loss is often the sum over time steps: 

L=∑t=1Tℓ(yt,y^t) 

Where y^t is the target at time step ttt, and ℓ\ellℓ is a loss function like cross-entropy or MSE. 

4. Backpropagation Through Time (BPTT) 

To train an RNN, gradients are computed over all time steps using Backpropagation Through Time 

(BPTT). 

∂W∂L=t=1∑T∂ht∂L∂W∂ht 

BPTT can suffer from: 

● Vanishing gradients (when gradients shrink) 

● Exploding gradients (when gradients grow too large) 

 

5. Variants of RNNs 

A. LSTM (Long Short-Term Memory) 



B. GRU (Gated Recurrent Unit) 

 

6. Applications of RNNs 

 

Task Input Output 

Language Modeling Text sequence Next word 

Sentiment Analysis Sentence Sentiment label 

Machine Translation Sentence Translated sentence 

Speech Recognition Audio sequence Text transcript 

Time Series Forecasting Past data Future values 

 

 7. Limitations of Basic RNNs 

 

Problem Explanation 

Vanishing gradients Long-term dependencies are hard to learn 

Limited memory Only short-term memory without LSTM/GRU 

Slow training Sequential processing limits parallelism 

 

 

 

LSTM 

LSTM architectures involves the memory cell which is controlled by three gates: the input gate, the forget 

gate and the output gate. These gates decide what information to add to, remove from and output from the 

memory cell. 

● Input gate: Controls what information is added to the memory cell. 



● Forget gate: Determines what information is removed from the memory cell. 

● Output gate: Controls what information is output from the memory cell. 

This allows LSTM networks to selectively retain or discard information as it flows through the network 

which allows them to learn long-term dependencies. The network has a hidden state which is like its 

short-term memory. This memory is updated using the current input, the previous hidden state and the 

current state of the memory cell. 

Working of LSTM 

LSTM architecture has a chain structure that contains four neural networks and different memory blocks 

called cells. 

 

LSTM Model 

Information is retained by the cells and the memory manipulations are done by the gates. There are three 

gates –  

Forget Gate 

The information that is no longer useful in the cell state is removed with the forget gate. Two inputs xt 

(input at the particular time) and ht-1 (previous cell output) are fed to the gate and multiplied with weight 

matrices followed by the addition of bias. The resultant is passed through an activation function which 

gives a binary output. If for a particular cell state the output is 0, the piece of information is forgotten and 

for output 1, the information is retained for future use.  

The equation for the forget gate is: 

 ft=σ(Wf⋅[ht−1,xt]+bf) 

 

 where: 

● W_f represents the weight matrix associated with the forget gate. 



● [h_t-1, x_t] denotes the concatenation of the current input and the previous hidden state. 

● b_f is the bias with the forget gate. 

● σ is the sigmoid activation function. 

 

Forget Gate 

Input gate 

The addition of useful information to the cell state is done by the input gate. First, the information is 

regulated using the sigmoid function and filter the values to be remembered similar to the forget gate 

using inputs ht-1 and xt. . Then, a vector is created using tanh function that gives an output from -1 to +1, 

which contains all the possible values from ht-1 and xt. At last, the values of the vector and the regulated 

values are multiplied to obtain the useful information. The equation for the input gate is: 

 

 it=σ(Wi⋅[ht−1,xt]+bi) 

C^t=tanh(Wc⋅[ht−1,xt]+bc) 

 

We multiply the previous state by ft, disregarding the information we had 

previously chosen to ignore. Next, we include it∗Ct. This represents the 

updated candidate values, adjusted for the amount that we chose to update 

each state value. 

 

Ct=ft⊙Ct−1+it⊙C^t 

where 



●  ⊙ denotes element-wise multiplication 

● tanh is tanh activation function 

 

Input Gate 

Output gate 

The task of extracting useful information from the current cell state to be presented as output is done by 

the output gate. First, a vector is generated by applying tanh function on the cell. Then, the information is 

regulated using the sigmoid function and filter by the values to be remembered using inputs  

 

Ht−1 and xt 

 

. At last, the values of the vector and the regulated values are multiplied to be sent as an output and input 

to the next cell. The equation for the output gate is: 

ot=σ(Wo⋅[ht−1,xt]+bo) 



 

Output Gate 

Bidirectional LSTM Model 

 

Bidirectional LSTM (Bi LSTM/ BLSTM) is a variation of normal LSTM which processes sequential data 

in both forward and backward directions. This allows Bi LSTM to learn longer-range dependencies in 

sequential data than traditional LSTMs which can only process sequential data in one direction. 

● Bi LSTMs are made up of two LSTM networks one that processes the input sequence in the 

forward direction and one that processes the input sequence in the backward direction.  

● The outputs of the two LSTM networks are then combined to produce the final output. 

LSTM models including Bi LSTMs have demonstrated state-of-the-art performance across various tasks 

such as machine translation, speech recognition and text summarization. 

LSTM networks can be stacked to form deeper models allowing them to learn more complex patterns in 

data. Each layer in the stack captures different levels of information and time-based relationships in the 

input. 

 

Applications of LSTM 

 

Some of the famous applications of LSTM includes: 

● Language Modeling: Used in tasks like language modeling, machine translation and text 

summarization. These networks learn the dependencies between words in a sentence to 

generate coherent and grammatically correct sentences. 

https://www.geeksforgeeks.org/bidirectional-lstm-in-nlp/


● Speech Recognition: Used in transcribing speech to text and recognizing spoken commands. 

By learning speech patterns they can match spoken words to corresponding text. 

● Time Series Forecasting: Used for predicting stock prices, weather and energy consumption. 

They learn patterns in time series data to predict future events. 

● Anomaly Detection: Used for detecting fraud or network intrusions. These networks can 

identify patterns in data that deviate drastically and flag them as potential anomalies. 

● Recommender Systems: In recommendation tasks like suggesting movies, music and books. 

They learn user behavior patterns to provide personalized suggestions. 

● Video Analysis: Applied in tasks such as object detection, activity recognition and action 

classification. When combined with Convolutional Neural Networks (CNNs) they help 

analyze video data and extract useful information. 

Recurrent Neural Network Language Models 

An RNN-LM extends the idea of RNNs to language modeling. It processes input sequences one word at a 

time, updating its hidden state at each step based on the current word and the information stored in the 

hidden state from the previous steps. This enables the model to capture contextual information and 

dependencies within a sequence of words, making it adept at tasks like text generation, sentiment 

analysis, and machine translation. 

Architecture 

The architecture of an RNN-LM typically consists of three main components: 

1.Embedding Layer 

The Embedding Layer is the initial component of an RNN Language Model, responsible for transforming 

individual words into continuous, dense vector representations. Each word in the vocabulary is assigned a 

unique vector, and these vectors are learned during the training process. This embedding process allows 

the model to capture semantic relationships between words and helps in understanding the context of a 

given word within a sequence. 

https://www.geeksforgeeks.org/introduction-convolution-neural-network/


Suppose we have a vocabulary with three words: “cat,” “dog,” and “fish.” The embedding layer might 

assign the following vectors: 

● Embedding(“cat”) = [0.2, 0.8, 0.5] 

● Embedding(“dog”) = [0.7, 0.3, 0.2] 

● Embedding(“fish”) = [0.9, 0.5, 0.1] 

The values assigned to the word vectors in the embedding layer are learned during the training process of 

the neural network. The goal is to find vector representations that capture meaningful semantic 

relationships between words based on the context in which they appear. 

Here’s a simplified explanation of how these values might be calculated: 

1. Initialization: 

● Initially, the word vectors are randomly initialized with small values. 

2.Objective Function: 

● The neural network has an objective function (often a loss function) that quantifies how well 

the model is performing on a given task (e.g., language modeling, sentiment analysis). 

 

Gradient Descent 



3.Backpropagation: 

● During training, the model processes input sequences, computes predictions, and compares 

them to the actual target values using the objective function. 

4.Gradient Descent: 

● The gradients of the objective function with respect to the parameters (including word 

vectors) are computed through backpropagation 

5.Parameter Updates: 

● The model adjusts the word vectors using optimization algorithms like gradient descent to 

minimize the objective function. 

For each word in the vocabulary (e.g., “cat,” “dog,” “fish”), the corresponding word vector is updated 

based on how it contributes to the overall performance of the model on the given task. 

Let’s consider an oversimplified example: 

New Embedding(“cat”)=Old Embedding(“cat”)−Learning 

Rate×Gradient(Objective Function with respect to “cat”) 

This process is repeated iteratively for multiple epochs until the model converges to representations that 

effectively capture the semantics and context of the words. 

2.Recurrent Layer 



The Recurrent Layer is the core of the RNN Language Model, responsible for capturing sequential 

dependencies in the input data. It maintains a hidden state that evolves over time as the model processes 

each word in a sequence. This hidden state retains information about the context of previous words, 

enabling the model to consider the entire input sequence. 

How it works: 

Hidden State: 

● The hidden state is updated at each time step based on the current input word and the 

previous hidden state. 

● Captures information about the context of the sequence. 

● RNNs can theoretically capture long-term dependencies by allowing information to persist in 

the hidden state throughout the sequence. 

Example: 

Given the word embeddings from the embedding layer, the recurrent layer updates the hidden state at 

each time step, incorporating information from previous steps. 

 

● ht is the hidden state at time t. 

● Whh and Wxh are weight matrices. 

● ht−1 is the previous hidden state. 

● xt is the input vector at time t. 

3.Output Layer 



The Output Layer is the final component of the RNN Language Model, responsible for producing the 

probability distribution over the vocabulary. It takes the information from the hidden state and generates a 

probability distribution, allowing the model to predict the likelihood of the next word in the sequence. 

How it works: 

● Softmax Activation: 

● The output layer typically uses a softmax activation function to convert raw scores into 

probabilities.Produces a probability distribution over the entire vocabulary. 

Example: 

Using the hidden state ht from the recurrent layer, the output layer calculates the unnormalized scores ut 

for each word in the vocabulary. 

● ut=Who⋅ht 

● The softmax activation then converts these scores into probabilities. 

 

● P(yt∣x1:t) is the probability of the next word yt given the input sequence x1:t. 



 

 

 

WORD-LEVEL RNNs & DEEP REINFORCEMENT LEARNING 

 Part 1: Word-Level Recurrent Neural Networks (RNNs) 

What Are They? 

Word-level RNNs treat words as atomic units rather than characters. They're commonly used in language 

modeling, text generation, and translation, where the input/output is a sequence of words. 

1. Input Representation 

● Each word is converted into a one-hot vector or more efficiently, an embedding vector: 

xt=Embedding(wt) 

Where: 

● wtw_twt: word at time step ttt 

● xt∈Rd: word embedding 

 

 2. RNN Forward Pass 

At each time step: 



ht=tanh⁡(Wxhxt+Whhht−1+bh) 

yt=softmax(Whyht+by) 

● ytt is a probability distribution over the vocabulary 

● Used to predict the next word w^t+1 

 

3. Loss Function 

L=−t=1∑TlogP(wt+1∣w1,…,wt) 

● Trained using cross-entropy loss over predicted vs. actual words 

4. Use Cases 

● Text generation 

● Machine translation (e.g., seq2seq with attention) 

● Speech recognition 

● Next-word prediction in language models (GPT-style models use transformer variants) 

 

Part 2: Deep Reinforcement Learning (Deep RL) 

What Is It? 

Deep Reinforcement Learning combines Reinforcement Learning (RL) with deep neural networks to 

make decisions in complex environments. 

1. Reinforcement Learning Basics 

● Agent: Learns to take actions 

● Environment: Gives feedback 

● State sts_tst 

● Action ata_tat 

● Reward rtr_trt 

● Policy π(at∣st) 

● Return Rt=∑k=0∞γkrt+K 

 

Goal: 

 Maximize expected cumulative reward: 

J(θ)=Eπθ[∑t=0Tγtrt] 

2. Deep Q-Networks (DQN) 



Used for discrete action spaces. Approximate the Q-value: 

Q(st,at)=rt+γmax⁡a′Q(st+1,a′)Q 

Use a neural network Q(s,a;θ)Q(s, a; \theta)Q(s,a;θ) and train using temporal difference (TD) loss: 

L(θ)=(rt+γmax⁡a′Q(st+1,a′;θ−)−Q 

Where θ is the target network's parameter (updated less frequently). 

3. Policy Gradient Methods 

Directly optimize the policy πθ(a∣s)\pi_\theta(a \mid s)πθ(a∣s) via gradient ascent: 

∇θJ(θ)=Eπθ[∇θlog⁡πθ(at∣st)Rt] 

Popular algorithms: 

● REINFORCE 

● A3C (Asynchronous Advantage Actor-Critic) 

● PPO (Proximal Policy Optimization) 

● DDPG, SAC (for continuous actions) 

 

 

 

4. Deep Networks in RL 

Task Deep RL Use 

Atari games (pixels → actions) DQN, Dueling DQN 

Robotics control DDPG, PPO, SAC 

Text-based games RNNs + Policy Gradients 

Multi-agent systems MADDPG, QMIX 

 

Combining RNNs and RL 

In environments with partial observability (like dialogue systems or text-based games), RNNs are used to 

encode history: 



ht=RNN(ht−1,ot) 

 π(at∣ht)=PolicyNetwork(ht) 

This enables the agent to remember past information and act accordingly. 

 

COMPUTATIONAL AND ARTIFICIAL NEUROSCIENCE 

Computational Neuroscience 

Computational neuroscience is the science of using mathematical models, computer simulations, and 

theoretical analysis to understand how the brain and nervous system work. It tries to bridge biology and 

computation by modeling how neurons, synapses, and neural circuits behave. 

 

Key Concepts: 

1. Neuron Modeling: 

 Scientists model how real neurons process signals. This includes how a neuron responds to 

electrical input and how it decides to send a signal to another neuron (a spike). 

 

2. Synaptic Transmission: 

 The connection between neurons is called a synapse. Computational neuroscience models how 

signals are transmitted and modified at these synapses. 

 

3. Plasticity: 

 This refers to how the strength of connections between neurons changes over time, which is 

essential for learning and memory. 

 

4. Neural Coding: 

 Researchers try to understand how the brain represents information. For example, does it encode 

by firing faster, in a pattern, or across multiple neurons? 

 

5. Simulations: 

 Using tools like NEURON or NEST, researchers simulate parts of the brain to study how groups 

of neurons behave and interact. 

 

Artificial Neuroscience (Artificial Neural Networks) 

Artificial neuroscience, also known as artificial neural networks (ANNs), draws inspiration from how 

biological brains work but simplifies and adapts it for machine learning tasks like image recognition, 

language translation, and robotics. 



Key Concepts: 

1. Artificial Neurons: 

 These are simplified models of biological neurons. They take in inputs, do some computation, 

and produce an output—just like real neurons. 

 

2. Network Structure: 

 Artificial neurons are connected in layers. There are input layers (which receive data), hidden 

layers (which process data), and output layers (which make predictions or decisions). 

 

3. Learning Process: 

 Instead of changing based on chemical or electrical signals like the brain, artificial networks learn 

by adjusting internal settings (weights) through a process called training. 

 

4. Types of Networks: 

 

○ Feedforward Networks: Data flows one way. Used for basic tasks. 

 

○ Convolutional Neural Networks (CNNs): Great for image recognition. 

 

○ Recurrent Neural Networks (RNNs): Handle sequences, like speech or text. 

 

○ Transformers: Modern networks used in models like ChatGPT. 

 

5. Differences from the Brain: 

 Artificial networks are not biologically accurate. They don't model spikes or complex chemical 

processes. They’re just inspired by the brain’s structure and function. 

Bridging Brain and Machine 

While computational neuroscience tries to understand the brain, artificial neuroscience tries to build smart 

systems inspired by the brain. The two fields increasingly overlap in areas like: 

● Spiking Neural Networks (SNNs): Artificial models that try to mimic the spiking behavior of real 

neurons. 

 

● Neuromorphic Computing: Special hardware designed to behave more like the brain. 

 

● Brain-Computer Interfaces (BCIs): Systems that let brains interact with machines. 


