

(AnAutonomousInstitution)

Coimbatore-641035.

UNIT 5- Laplace Transform

Shifting Theorem

If I {f(t)} = F(s) then (i) $L [e^{-at} f(t)] = \{L [f(t)]\} = F(s+a)$ (ii) $L [e^{at} f(t)] = \{L [f(t)]\}_{S \to S+a} = F(s-a)$ **Proof**: (i) We know that $L [f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt = F(s)$ $L \left[e^{at} f(t) \right] = \int e^{-st} \left[e^{-at} f(t) \right] dt$ $= \int_{0}^{\infty} e^{-(S+a)t} f(t) dt$ $\int (ii) L [e^{at} - f(t)] = \int e^{st} [e^{at} - f(t)] dt$ $= \int_{0}^{\infty} e^{-(s-a)t} f(t) dt$ Second Shifting Property: $If <math>L \{f(t)\} = F(s) \text{ and } g(t) = \begin{cases} f(t-a), \\ t \neq a \end{cases}$ then $L[g(t)] = e^{-as} F(s).$ Proof. $\frac{P_{roof}}{2} = \int e^{-st} g(t) dt$ $= \int e^{-st} g(t) dt + \int e^{-st} g(t) dt$ Proof:

(AnAutonomousInstitution) Coimbatore-641035.

$$\begin{split} \mathcal{L}\left[g(t)\right] &= o + \int_{a}^{\infty} e^{-St} f(t-a)dt \\ &= \int_{a}^{\infty} e^{-St} f(t-a)dt \\ put \ E-a &= u \Rightarrow dt = du \\ \text{When } t &= a \Rightarrow u = o \\ E \to \infty \Rightarrow u \to \infty \\ \mathcal{L}\left[g(t)\right] &= \int_{0}^{\infty} e^{-S(u+a)} f(u)du \\ &= \int_{0}^{\infty} e^{-us} e^{-as} f(u)du \\ &= e^{-as} \int_{0}^{\infty} e^{-st} f(u)du \\ &= e^{-as} \int_{0}^{\infty} e^{-st} f(t)dt \quad \text{Replace } u \to t \\ \mathcal{L}\left[g(t)\right] &= e^{-as} F(s) . \end{split}$$

(AnAutonomousInstitution) Coimbatore-641035.

Find $L \left[e^{-3t} \sin^2 t \right] = \left[12 \cos^{-9} \right] L$ $\frac{\text{Proof}}{\text{L}\left[e^{-at} + f(t)\right]^2} = F(s+a)$ $L\left[e^{-3t}\sin^2 t\right] = L\left[\sin^2 t\right]_{S \to S+3}$ $= L \left[\frac{1 - \cos at}{a} \right] = \frac{1}{2} \int \frac{1}{c} \frac{1}{c}$ $= \frac{1}{2} \left\{ L(i) - L(\cos at) \right\}_{S \to ST3}$ $1=\frac{1}{2}\left\{\frac{1}{5},\frac$ $= \frac{1}{2} \left\{ \frac{1}{s+3} - \frac{s+3}{(s+3)^2 + 4} \right\}$ $= \frac{1}{2} \left\{ \frac{4}{(s+3)} \left[\frac{4}{(s+3)^2 + 4} \right] \right\}$ $= \frac{2}{(s+3) \left[(s+3)^2 + 4 \right]}$

(AnAutonomousInstitution) Coimbatore-641035.

0-3573 Find L[f(t)] where $f(t) = \begin{cases} 0, 0 \le t \le a \\ 3, t \ge a \end{cases}$ Soln: $L \{f(t)\} = \int e^{st} f(t) dt$ $-st f(t) dt + \int e^{-st} f(t) dt$. 3 dt 3 $= -\frac{3}{s} \left[e^{-\alpha} - e^{-\alpha s} \right]^{\alpha}$. moza S $e^{-At}t^2$] =