

SNSCOLLEGEOFTECHNOLOGY

(AnAutonomousInstitution) Coimbatore-641035.

UNIT 5- Laplace Transform

Transforms of derivatives and integrals

Laplace transforms of desivatives:

If
$$L[f(t)] = F(s)$$
 then

 $L[f'(t)] = SF(s) - f(o)$.

Laplace Transform of integrals:

If $L[f(t)] = F(s)$ then $L[f(t)] = F(s)$

SNSCOLLEGEOFTECHNOLOGY

(AnAutonomousInstitution)

Coimbatore-641035.

Find L [t cos at] =
$$-\frac{d}{ds}$$
 [L(cos at)]

$$= -\frac{d}{ds} \left[\frac{S}{s^2 + a^2} \right]$$

$$= -\frac{d}{ds} \left[\frac{S}{s^2 + a^2} \right]$$

$$= -\frac{a^2 - s^2}{(s^2 + a^2)^2}$$

$$= \frac{s^2 - a^2}{(s^2 + a^2)^2}$$

$$= \frac{s^2 - a^2}{(s^2 + a^2)^2}$$

$$= \frac{s^3 - a^2}{(s^2 + a^2)^2}$$

$$= \frac{s^4 - a^2}{(s^2 + a^2)^2}$$

$$= \frac{s^3 - a^2}{(s^2 + a^2)^2}$$

$$= \frac{s^$$

SNSCOLLEGEOFTECHNOLOGY

(AnAutonomousInstitution) Coimbatore-641035.

$$= b (S-2)$$

$$[(S-a)^{2}+9]^{2}$$

$$= b (S-a)$$

$$(S^{2}-4S+13)$$
Find 1 $\begin{bmatrix} Sin 3t \\ t \end{bmatrix}$

$$= \int_{S}^{\infty} F(S) dS = \int_{S}^{\infty} L [f(t)] dS$$

$$L \begin{bmatrix} \frac{f(t)}{t} \end{bmatrix} = \int_{S}^{\infty} I (Sin 3t) dS$$

$$= \int_{S}^{\infty} (\frac{3}{s^{2}+q}) dS$$

$$= \int_{S}^{\infty} (\frac{3}{s^{2}+q^{2}}) dS$$

$$= \int_{S}^{\infty} (\frac{3}{s^{2}$$