
SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35 
(An Autonomous Institution) 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

 

19CST302&Neural Networks and Deep                                               

Learning                                                             S.VASUKI 
 

Page 1  

 

Image generation with Generative adversarial networks 

 

Training GANs for Image Generation 

Generative Adversarial Networks (GANs) consist of two neural networks—the Generator and the 

Discriminator—that compete with each other. The Generator creates images from random noise 

aiming to make them look as realistic as possible while the Discriminator evaluates these images to 

determine whether they are real or fake. 

Training Generative Adversarial Networks (GANs) is an iterative process that revolves around the 

interaction between two neural networks: 

Training the Discriminator 

The Discriminator starts by being trained on a dataset containing real images. Its goal is to 

differentiate between these real images and fake images generated by the Generator. Through 

backpropagation and gradient descent, the Discriminator adjusts its parameters to improve its ability 

to accurately classify real and generated images. 

Training the Generator 

Concurrently the Generator is trained to produce images that are increasingly difficult for the 

Discriminator to distinguish from real images. Initially the Generator generates random noise but as 

training progresses it learns to generate images that resemble those in the training dataset. The 

Generator's parameters are adjusted based on the feedback from the Discriminator, optimizing the 

Generator's ability to create more realistic and high-quality images. 

Implementing Generative Adversarial Networks (GANs) for Image Generation 

Step 1: Import Necessary Libraries and Load Dataset 

Import necessary libraries including TensorFlow, Keras layers and models, NumPy for numerical 

operations and Matplotlib for plotting. 

import numpy as np 

import tensorflow as tf 

from tensorflow.keras import layers, models, optimizers 

import matplotlib.pyplot as plt 

https://www.geeksforgeeks.org/generative-adversarial-network-gan/
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Step 2: Dataset Preparation 

Proper data preparation is crucial for the successful training of neural networks. For the MNIST 

dataset the preprocessing steps include loading the dataset reshaping the images to ensure they are in 

the correct format for TensorFlow processing and normalizing the pixel values to the range [0,1]. 

Normalization helps stabilize the training process by keeping the input values small. 

(x_train, _), (_, _) = tf.keras.datasets.mnist.load_data() 

x_train = x_train.reshape((-1, 28, 28, 1)).astype('float32') / 255.0 

Step 2: Building the Models 

This step involves defining the architecture for both the generator and the discriminator using 

convolutional neural network (CNN) layers, tailored to efficiently process and generate image data. 

Generator Model with CNN Layers 

The generator’s role in a GAN is to synthesize new images that mimic the distribution of a given 

dataset. In this case, we use convolutional transpose layers, which are effective for upscaling the 

input and creating detailed images from a lower-dimensional noise vector. 

 Dense Layer: Converts the input 100-dimensional noise vector into a high-dimensional feature 

map. 

 Reshape: Transforms the feature map into a 3D shape that can be processed by convolutional 

layers. 

 Conv2DTranspose Layers: These layers perform upscaling and convolution simultaneously, 

gradually increasing the resolution of the generated image. 

 BatchNormalization: Stabilizes the learning process and helps in faster convergence. 

 Activation Functions: 'ReLU' is used for non-linearity in intermediate layers, while 'sigmoid' 

is used in the output layer to normalize the pixel values between 0 and 1. 

def build_generator_cnn(): 

    model = models.Sequential([ 

        layers.Dense(7*7*128, input_dim=100, activation='relu'), 

        layers.Reshape((7, 7, 128)),  # Reshape into an initial image format 

 

        layers.Conv2DTranspose(128, kernel_size=4, strides=2, padding='same', activation='relu'), 
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        layers.BatchNormalization(), 

 

        layers.Conv2DTranspose(128, kernel_size=4, strides=2, padding='same', activation='relu'), 

        layers.BatchNormalization(), 

 

        layers.Conv2D(1, kernel_size=7, activation='sigmoid', padding='same') 

    ]) 

    return model 

Discriminator Model with CNN Layers 

The discriminator is a binary classifier that determines whether a given image is real (from the 

dataset) or fake (generated by the generator). 

 Conv2D Layers: Perform convolutions with a stride of 2 to downsample the image, reducing 

its dimensionality and increasing the field of view of the filters. 

 BatchNormalization: Used here as well to ensure stable training. 

 Flatten: Converts the 2D feature maps into a 1D feature vector necessary for classification. 

 Dense Output Layer: Outputs a single probability indicating the likelihood that the input 

image is real. 
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