
SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep

Learning S.VASUKI

Page 1

Image generation with Generative adversarial networks

Training GANs for Image Generation

Generative Adversarial Networks (GANs) consist of two neural networks—the Generator and the

Discriminator—that compete with each other. The Generator creates images from random noise

aiming to make them look as realistic as possible while the Discriminator evaluates these images to

determine whether they are real or fake.

Training Generative Adversarial Networks (GANs) is an iterative process that revolves around the

interaction between two neural networks:

Training the Discriminator

The Discriminator starts by being trained on a dataset containing real images. Its goal is to

differentiate between these real images and fake images generated by the Generator. Through

backpropagation and gradient descent, the Discriminator adjusts its parameters to improve its ability

to accurately classify real and generated images.

Training the Generator

Concurrently the Generator is trained to produce images that are increasingly difficult for the

Discriminator to distinguish from real images. Initially the Generator generates random noise but as

training progresses it learns to generate images that resemble those in the training dataset. The

Generator's parameters are adjusted based on the feedback from the Discriminator, optimizing the

Generator's ability to create more realistic and high-quality images.

Implementing Generative Adversarial Networks (GANs) for Image Generation

Step 1: Import Necessary Libraries and Load Dataset

Import necessary libraries including TensorFlow, Keras layers and models, NumPy for numerical

operations and Matplotlib for plotting.

import numpy as np

import tensorflow as tf

from tensorflow.keras import layers, models, optimizers

import matplotlib.pyplot as plt

https://www.geeksforgeeks.org/generative-adversarial-network-gan/

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep

Learning S.VASUKI

Page 2

Step 2: Dataset Preparation

Proper data preparation is crucial for the successful training of neural networks. For the MNIST

dataset the preprocessing steps include loading the dataset reshaping the images to ensure they are in

the correct format for TensorFlow processing and normalizing the pixel values to the range [0,1].

Normalization helps stabilize the training process by keeping the input values small.

(x_train, _), (_, _) = tf.keras.datasets.mnist.load_data()

x_train = x_train.reshape((-1, 28, 28, 1)).astype('float32') / 255.0

Step 2: Building the Models

This step involves defining the architecture for both the generator and the discriminator using

convolutional neural network (CNN) layers, tailored to efficiently process and generate image data.

Generator Model with CNN Layers

The generator’s role in a GAN is to synthesize new images that mimic the distribution of a given

dataset. In this case, we use convolutional transpose layers, which are effective for upscaling the

input and creating detailed images from a lower-dimensional noise vector.

 Dense Layer: Converts the input 100-dimensional noise vector into a high-dimensional feature

map.

 Reshape: Transforms the feature map into a 3D shape that can be processed by convolutional

layers.

 Conv2DTranspose Layers: These layers perform upscaling and convolution simultaneously,

gradually increasing the resolution of the generated image.

 BatchNormalization: Stabilizes the learning process and helps in faster convergence.

 Activation Functions: 'ReLU' is used for non-linearity in intermediate layers, while 'sigmoid'

is used in the output layer to normalize the pixel values between 0 and 1.

def build_generator_cnn():

 model = models.Sequential([

 layers.Dense(7*7*128, input_dim=100, activation='relu'),

 layers.Reshape((7, 7, 128)), # Reshape into an initial image format

 layers.Conv2DTranspose(128, kernel_size=4, strides=2, padding='same', activation='relu'),

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep

Learning S.VASUKI

Page 3

 layers.BatchNormalization(),

 layers.Conv2DTranspose(128, kernel_size=4, strides=2, padding='same', activation='relu'),

 layers.BatchNormalization(),

 layers.Conv2D(1, kernel_size=7, activation='sigmoid', padding='same')

])

 return model

Discriminator Model with CNN Layers

The discriminator is a binary classifier that determines whether a given image is real (from the

dataset) or fake (generated by the generator).

 Conv2D Layers: Perform convolutions with a stride of 2 to downsample the image, reducing

its dimensionality and increasing the field of view of the filters.

 BatchNormalization: Used here as well to ensure stable training.

 Flatten: Converts the 2D feature maps into a 1D feature vector necessary for classification.

 Dense Output Layer: Outputs a single probability indicating the likelihood that the input

image is real.

	Training GANs for Image Generation
	Training the Discriminator
	Training the Generator

	Implementing Generative Adversarial Networks (GANs) for Image Generation
	Step 1: Import Necessary Libraries and Load Dataset
	Step 2: Dataset Preparation
	Step 2: Building the Models
	Generator Model with CNN Layers

