
SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep

Learning S.VASUKI

Page 1

Parsing and Sentiment Analysis using Recursive Neural Networks

A parsing tree of a recursive neural network predicting word sentiment classes. The leaf nodes

are input tokens, all the other nodes are representations of the combination of the child nodes.

The root node is representation of the entire input text.

Recurrent Neural Networks (RNNs) excel in sequence tasks such as sentiment analysis due to

their ability to capture context from sequential data. In this article we will be apply RNNs to

analyze the sentiment of customer reviews from Swiggy food delivery platform. The goal is

to classify reviews as positive or negative for providing insights into customer experiences.

We will conduct a Sentiment Analysis using the TensorFlow framework:

Step 1: Importing Libraries and Dataset

Here we will be importing numpy, pandas, Regular Expression (RegEx), scikit

learn and tenserflow.

import pandas as pd

import numpy as np

import re

from sklearn.model_selection import train_test_split

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import SimpleRNN, Dense, Embedding

Step 2: Loading Dataset

We will be using swiggy dataset of customer reviews. You can download dataset from here.

data = pd.read_csv('swiggy.csv')

print("Columns in the dataset:")

print(data.columns.tolist())

Output:

Columns in the dataset:

[‘ID’, ‘Area’, ‘City’, ‘Restaurant Price’, ‘Avg Rating’, ‘Total Rating’, ‘Food Item’, ‘Food

Type’, ‘Delivery Time’, ‘Review’]

 Step 3: Text Cleaning and Sentiment Labeling

data[‘sentiment’]: Uses Avg Rating to generate binary labels (positive if rating >3.5)

data["Review"] = data["Review"].str.lower()

data["Review"] = data["Review"].replace(r'[^a-z0-9\s]', '', regex=True)

data['sentiment'] = data['Avg Rating'].apply(lambda x: 1 if x > 3.5 else 0)

https://www.geeksforgeeks.org/convolutional-neural-network-cnn-in-machine-learning/
https://www.geeksforgeeks.org/introduction-to-numpy/
https://www.geeksforgeeks.org/pandas-tutorial/
https://www.geeksforgeeks.org/write-regular-expressions/
https://www.geeksforgeeks.org/learning-model-building-scikit-learn-python-machine-learning-library/
https://www.geeksforgeeks.org/learning-model-building-scikit-learn-python-machine-learning-library/
https://www.geeksforgeeks.org/introduction-to-tensorflow/
https://media.geeksforgeeks.org/wp-content/uploads/20250213152158779318/swiggy.csv

SNS COLLEGE OF TECHNOLOGY, COIMBATORE –35
(An Autonomous Institution)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

19CST302&Neural Networks and Deep

Learning S.VASUKI

Page 2

data = data.dropna()

Tokenization and Padding

max_features = 5000

max_length = 200

tokenizer = Tokenizer(num_words=max_features)

tokenizer.fit_on_texts(data["Review"])

X = pad_sequences(tokenizer.texts_to_sequences(data["Review"]), maxlen=max_length)

y = data['sentiment'].values

 Tokenizer: Converts words into integer sequences.

 Padding: Ensures all input sequences have the same length (max_length).

Note: These concepts are a not a part of RNN but are done to make model prediction better.

You can refer to tokenization and padding for more details.

Data Splitting

X_train, X_test, y_train, y_test = train_test_split(

 X, y, test_size=0.2, random_state=42, stratify=y

)

X_train, X_val, y_train, y_val = train_test_split(

 X_train, y_train, test_size=0.1, random_state=42, stratify=y_train

)

Build RNN Model

model = Sequential([

 Embedding(input_dim=max_features, output_dim=16, input_length=max_length),

 SimpleRNN(64, activation='tanh', return_sequences=False),

 Dense(1, activation='sigmoid')

])

model.compile(

 loss='binary_crossentropy',

 optimizer='adam',

 metrics=['accuracy']

)

https://www.geeksforgeeks.org/what-is-tokenization/
https://www.geeksforgeeks.org/cnn-introduction-to-padding/

	A parsing tree of a recursive neural network predicting word sentiment classes. The leaf nodes are input tokens, all the other nodes are representations of the combination of the child nodes. The root node is representation of the entire input text.
	Step 1: Importing Libraries and Dataset
	Step 2: Loading Dataset
	Step 3: Text Cleaning and Sentiment Labeling
	Tokenization and Padding
	Data Splitting
	Build RNN Model

