

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)
COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME: 23EET206/ Measurements and Instrumentation
II YEAR / IV SEMESTER

UNIT 1- FUNDAMENTALS OF MEASUREMENT

Topic 2 – Types of Measurement systems

SUCCESSFUL STUDENT

Positive Attitude

Professionally Groomed

Socially Interactive

Technically Skillful

Instrumentation Systems

An instrumentation/measurement process can be viewed as a system whose input is the true value of the variable being measured and its output is the measured value.

Figure 1.10 Measurement system elements

Characteristics of Measurement devices

 Static: concerned only with the steady-state reading that the instrument settles down to, such as the accuracy of the reading etc.

 Dynamic: describe then transient behavior between the time a measured quantity changes value and the time when the instrument output attains a steady value in response.

Example

A spring balance is calibrated in an environment at a temperature of 20°C and has the following deflection/load characteristic.

Load (kg)	0	1	2	3
Deflection (mm)	0	20	40	60

It is then used in an environment at a temperature of 30°C and the following deflection/load characteristic is measured

Load (kg)	0	1	2	3
Deflection (mm)	5	27	49	71

Determine the zero drift and the sensitivity drift per C change in ambient temperature.

06.03.2025

Solution

- At 20°C, deflection/load characteristic is a straight line with:
 0 mm deflection for no load and Sensitivity = 20 mm/kg.
- At 30°C, deflection/load characteristic is still a straight line with:
 5 mm deflection for no load and Sensitivity = 22 mm/kg.
- Zero drift per C change in ambient temperature =

$$\frac{\Delta \text{(no load deflection)}}{\Delta T} = \frac{5 - 0}{30 - 20} = 0.5 \text{mm/}^{\circ}\text{C}$$

Sensitivity drift per C change in ambient temperature =

$$\frac{\Delta (\text{Sensitivit y})}{\Delta T} = \frac{22 - 20}{30 - 20} = 0.2 \frac{\text{mm/Kg}}{\text{c}}$$

ASSESSMENT

publicdomainvectors.org

REFERENCE

TEXT BOOKS

- A. K. Sawhney, "A Course in Electrical & Electronic Measurements & Instrumentation", Dhanpat Rai & CO., New Delhi, 2022.
- S. Gupta and J. John, "Virtual Instrumentation using Lab VIEW", Tata McGraw-Hill Publishing Company Limited, New Delhi, 2010.

REFERENCES

- **R1** David A.Bell, "Electronic Instrumentation and Measurements", Oxford Higher Education, 2013
- **R2** Bouwens A J, "Digital Instrumentation", Tata Mc Graw Hill, New Delhi2016
- R3 Martin U. Reissland, "Electrical Measurement Fundamental Concepts and Applications", New Age International (P) Ltd., 2015
- R4 J. B. Gupta, "A Course in Electronic and Electrical Measurements and Instrumentation", S. K. Kataria & Sons, Delhi, 2013
- R5 M. S. Anand, "Electronics Instruments and Instrumentation Technology", Prentice Hall India, NewDelhi, 2012.

WEB REFERENCES

- W1 https://pasargadabzar.com/wp-content/uploads/2022/04/Morris_Langari-1.pdf
- W2 https://www.vssut.ac.in/lecture_notes/lecture1423813026.pdf
- W3 https://hombredelamancha.com/products/ebook-electrical-and-electronic-measurements-and-instrumentation?srsltid=AfmBOorTb5k9Ga1rsImj69-l3SximYYra7U8VhGcqYahqsfk9BR9rC7k

THANK YOU!!