

SNSCOLLEGEOFTECHNOLOGY

(AnAutonomousInstitution) Coimbatore-641035.

UNIT 5- Laplace Transform

Transforms of derivatives and integrals

Laplace transforms of desivatives:

If
$$L[f(t)] = F(s)$$
 then

 $L[f'(t)] = SF(s) - f(o)$.

Laplace Transform of integrals:

If $L[f(t)] = F(s)$ then $L[f(t)] = F(s)$

SNSCOLLEGEOFTECHNOLOGY

(AnAutonomousInstitution)

Coimbatore-641035.

Find L [t cos at] =
$$-\frac{d}{ds}$$
 [L(cos at)]

L[t cos at] = $-\frac{d}{ds}$ [L(cos at)]

= $-\frac{d}{ds}$ [$\frac{s}{s^2 + a^2}$]

= $-\frac{s^2 + a^2}{(s^2 + a^2)^2}$]

= $\frac{s^2 - a^2}{(s^2 + a^2)^2}$

= $\frac{s^2 - a^2}{(s^2 + a^2)^2}$

= $-\frac{d}{ds}$ [L[e^{2t} sin 3t]]

Soln:

L[te e^{3t} sin 3t] = $-\frac{d}{ds}$ [L(sin 3t)]

= $-\frac{d}{ds}$ [L(sin 3t)]

= $-\frac{d}{ds}$ [$\frac{3}{s^2 + 9}$] $\frac{3}{s} \rightarrow s - a$

= $\frac{5}{s} = \frac{6s}{(s^2 + 9)^2}$] $\frac{3}{s} \rightarrow s - a$

SNSCOLLEGEOFTECHNOLOGY

(AnAutonomousInstitution) Coimbatore-641035.

$$= \frac{b(s-a)}{[(s-a)^{2}+9]^{2}}$$

$$= \frac{b(s-a)}{(s^{2}-4s+13)}$$

$$= \frac{b(s-a)}{(s^{2}-4s+13)}$$
Find $1 = \frac{sin 3t}{t}$

$$= \int_{s}^{\infty} \frac{1}{s(s)} ds = \int_{s}^{\infty} 1 = \int_{s}^{\infty} 1$$