

(AnAutonomousInstitution)

Coimbatore-641035.

UNIT 5- Laplace Transform

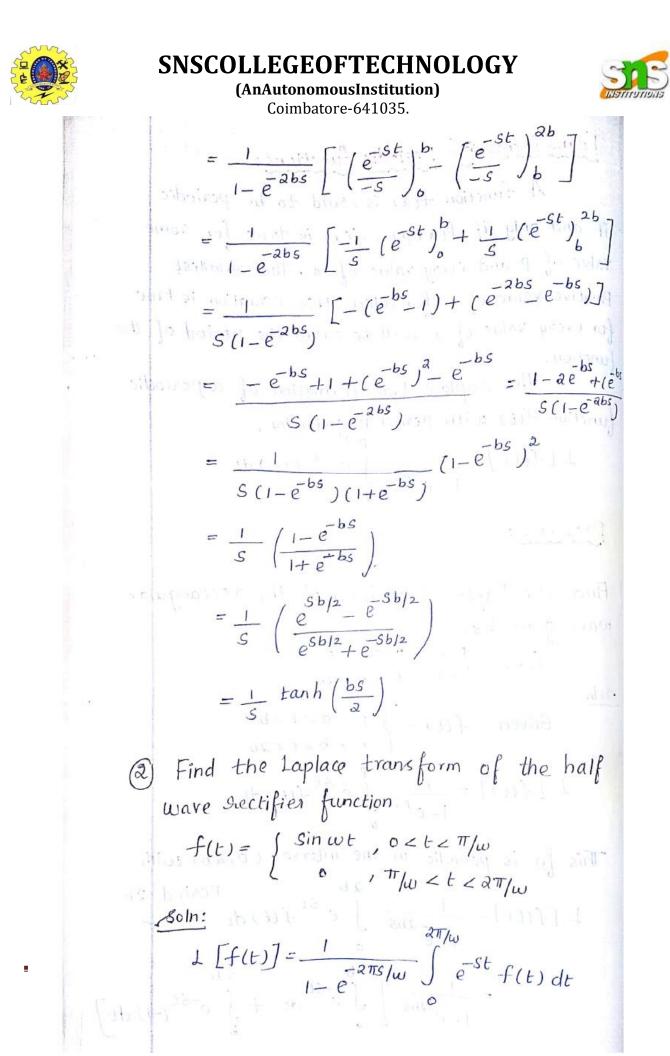
Initial and final value theorem

Thitial value theorem: 19921 If the Laplace transform of f(t) and f'(t) exists and L[f(t)] = F(s) then $\begin{array}{c} Lt \\ t \rightarrow 0 \end{array} \begin{bmatrix} f(t) \end{bmatrix} = \begin{array}{c} Lt \\ S \rightarrow \infty \end{array} \begin{bmatrix} S F(S) \end{bmatrix}$ We know that g(t) + L [f'(t)] = S L [f(t)] - f(0)(o) + (o) = S(F(S) - f(o)) \Rightarrow SF(S) = L[f'(t)] + f(0) $SF(S) = \int_{0}^{\infty} e^{-St} f'(t) dt + f(0).$ Taking limit as S-> a on both sides we get, $\begin{array}{ccc} Lt & SF(S) = Lt & \int \int e^{-St} f'(t) dt + f(0) \\ S \rightarrow \infty & \int v & \int$

 $= \int_{0}^{\infty} \int_{0}^{\infty} e^{-st} f'(t) dt + f(0)$ $= \int_{0}^{\infty} \int_{0}^{1t} e^{-st} f'(t) dt + f(0)$ -0+f(0)= 1t f(t) $t \to 0$ Hence Lt = f(t) = Lt = SF(s) $t \to 0 \qquad s \to \infty$ Final value theorem : If the Laplace transform of f(t) and f'(t) exists and L[f(t)] = F(S) then $\begin{array}{c} \text{Lt} \\ t \to \infty \end{array} \begin{bmatrix} f(t) \end{bmatrix} = \begin{array}{c} \text{Lt} \\ S \to 0 \end{array} \begin{bmatrix} S \\ F(S) \end{bmatrix}$ Proof : We Know that L [f'(t)] = S L [f(t)] - f(o)= SF(S) - f(o) \Rightarrow s F(s) = $\sum [f'(t)] + f(o)$ Taking Limit s - o on both sides, we get, $\begin{array}{c} 1t \quad [S \ F(s)] = 1t \quad S \quad \int e^{-St} f'(t) dt + f(o) \\ S \rightarrow o \quad S \quad f'(t) dt + f(o) \end{array}$ $= \int_{s \to 0}^{\infty} \frac{1t}{s \to 0} e^{-st} f'(t) dt + f(0)$ $= \int_{0}^{\infty} f'(t) dt + f(0)$ $= [f(t)]_{0}^{\infty} + f(0)$ $= f(\infty) - f(0) + f(0) = Lt f(t)$ Hence Lt = f(t) = Lt [SF(s)]

Verify the initial and final value theorem for $f(t) = 1 + e^{t} (Sint + cost)$ $\underbrace{soln:}_{F(S)} = L \left[1 + e^{t} Sint + e^{t} cost \right]$ but is J - LL, C sint (+) + (+ $= \frac{1}{s} + \left(\frac{1}{s^2+1}\right) + \left(\frac{s}{s^2+1}\right) + \left(\frac{s}{s^2+1}\right) + \frac{1}{s} + \frac{1}{s^2+1} + \frac{1}{s} + \frac{1}$ $= \frac{1}{5} + \frac{1}{(5+1)^2 + 1} + \frac{5+1}{(5+1)^2 + 1}$ Heavisides with function \$+20 front =s, u(t-a)= 50, t st+25+22 . $S F(s) = S \left[\frac{1}{s} + \frac{s+2}{s^2+2s+2} \right]$ Initial value theorem : $\begin{bmatrix} 1t & f(t) = 1t & s.F(s) \\ t \to o & f(t) = 1t \\ t \to o & t \to o \end{bmatrix} = 1t = 1t = 2$ Lt f(t) = 1t = 1t = 2Lt f(t) = 1t = $= Lt \quad 1+ \frac{S^{2}+2S}{S^{2}+aS} + \frac{1}{S^{2}+aS} = 1+1$ $= 1+1 \qquad = Lt \qquad (1+\frac{2}{S^{2}+aS}) \qquad s^{2} \left[1+\frac{2}{S}\right]$ $= 1+1 \qquad = Lt \qquad S+OS \qquad 1+ \frac{s^{2} \left[1+\frac{2}{S}\right]}{S^{2} \left[1+\frac{2}{S}\right]} + \frac{1}{S^{2} \left[1+\frac{2}{S}\right]} + \frac{1}{S^{2} \left[1+\frac{2}{S}\right]} = \frac{1}{S+OS} + \frac{1}{S^{2} \left[1+\frac{2}{S}\right]} + \frac{1}{S^{2} \left[1+\frac{2}{S}\right]}$ TVT is vesified.Final Value theorem: $\begin{bmatrix} 1t \\ t \to \infty \end{bmatrix} f(t) = \begin{bmatrix} 1t \\ t \to \infty \end{bmatrix} s \to s \cdot F(s)$ $Lt \quad f(t) = Lt \quad \begin{bmatrix} 1 + e^{-t} (sint + cost) \end{bmatrix} = 1$

SF(S) = Lt $S \rightarrow c$ S $= Lt \qquad 5 + 2S \qquad = 1$ $S \rightarrow 0 \left[1 + \frac{S^{2} + 2S}{S^{2} + 2S + 2} \right] = 1$ Hence $Lt \qquad f(t) = Lt \qquad SF(S) = 1 \qquad FVT iS$ $t \rightarrow 0 \qquad S \rightarrow 0$ Ver



e^{-st} Sin wt dt aTTS/42 π e -w COSW s sin wt 2TTS/W S cosbx 2TTS/W e Here n=t STT/W w 0 b = STT/W) (1+e+STT/w e ω = $(1-e^{-S\pi/\omega})(S^2+\omega^2)$