

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai ai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & D. Tech.IT) COIMBATORE-641 035, TAMIL NADU

Properties:

Change of Scale Property:

The LSf(t)
$$f = F(s)$$
, then

L $[f(at)] = \frac{1}{a} F(\frac{s}{a})$.

Proof:

we Know that,

We know that,
$$L[f(at)] = \int_{0}^{\infty} e^{-St} f(at) dt$$
Put $at = x$

$$t = \frac{x}{a} \qquad dt = \frac{dx}{a}$$

Put
$$at = \frac{\alpha}{a}$$
 $t = \frac{d\alpha}{a}$

$$L\left[f(at)\right] = \int e^{-s} (x/a) f(x) \frac{dx}{a}$$

$$= \frac{1}{a} \int e^{-(s/a)x} f(x) dx$$

$$= \frac{1}{a} \int e^{-(s/a)x} f(x) dx$$

$$\left[L\left[f(at)\right] = \frac{1}{a}F\left(\frac{s}{a}\right)\right]$$

First shifting Roperty:

If
$$L\{f(t)\} = F(s) \text{ then}$$

i) $L[e^{-at}f(t)] = \{L[f(t)]\}_{s \to s+a} = F(s+a)$

Proof :

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai ai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & Comp.; B.Tech.IT)

COIMBATORE-641 035, TAMIL NADU

i) We know that,

$$L[f(t)] = \int_{0}^{\infty} e^{-st} f(t) dt = f(s)$$

$$L[e^{at}f(t)] = \int_{0}^{\infty} e^{-st} [e^{-at}f(t)] dt$$

$$= \int_{0}^{\infty} e^{-(s+a)t} f(t) dt$$

$$= \int_{0}^{\infty} e^{-(s+a)t} f(t) dt$$

$$= \int_{0}^{\infty} e^{-(s-a)t} f(t) dt$$

$$= \int_{0}^{\infty} e^{-(s+a)t} f(t) dt$$

$$= \int_{0}^{\infty} e^{-st} f(t) dt$$

$$= \int_{0}^{\infty} e^{-st} f(t) dt$$

$$= \int_{0}^{\infty} e^{-st} f(t-a) dt$$

$$= \int_{0}^{\infty} e^{-st} f(t-a) dt$$

$$= \int_{0}^{\infty} e^{-st} f(t-a) dt$$

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Composition of the Accredited by NBA (B.E - CSE, EEE, ECE, Mech & COMBATORE-641 035, TAMIL NADU

Put
$$t-a=u \Rightarrow dt = du$$

when $t=a \Rightarrow u=0$
 $t=a\Rightarrow u=a$

$$L[g[t]] = \int_{e}^{a} e^{-s(u+a)}f(u)du$$

$$= \int_{e}^{a} e^{-us} e^{-as} f(u)du$$

$$= \int_{e}^{a} e^{-st} f(t)dt$$

Problems on Change of Scale Profesty:

1) Find L (sinh 3t) by using change of scale Roperty

$$\frac{dcl}{dcl} L(sinht) = \frac{1}{s^2 - 1} = f(s)$$

$$L(sinh3t) = \frac{1}{3} + \frac{s}{3}$$

$$= \frac{1}{3} + \frac{s}{3}$$

$$= \frac{1}{3} + \frac{s}{3}$$

$$= \frac{1}{3} + \frac{s}{3}$$

$$= \frac{1}{3} + \frac{s}{3}$$

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Composition of the Accredited by NBA (B.E - CSE, EEE, ECE, Mech & Composition of the Accredited by NBA (B.E - CSE, EEE, ECE, Mech & COMBATORE-641 035, TAMIL NADU

$$= \int_{a}^{b} e^{-st} f(t-a) dt$$
Put $t-a=u \Rightarrow dt = du$
when $t=a \Rightarrow u=0$

$$t=a\Rightarrow u=a$$

$$L[g(t)] = \int_{a}^{a} e^{-s(u+a)} f(u) du$$

$$= \int_{a}^{a} e^{-us} e^{-as} f(u) du$$

$$= \int_{a}^{a} e^{-us} f(u) du$$

$$= \int_{a}^{a} e^{-st} f(t) dt$$

Problems on Change of Scale Profesty:

1) Find L (sinh3t) by using change of Scale Property.

del: L (sinht) =
$$\frac{1}{s^2-1}$$
 = F(s)

L (sinh3t) = $\frac{1}{3}$ F ($\frac{S}{3}$)

= $\frac{1}{3}$ $\frac{1}{(\frac{S}{3})^2-1}$

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Comp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & Comp, B. Tech.IT) COIMBATORE-641 035, TAMIL NADU

$$= \frac{1}{3} \left(\frac{9}{s^2-9}\right)$$

$$= \frac{3}{s^2-9}$$

$$L(\sin h 3t) = \frac{3}{s^2-9}$$

$$2) \text{ Find } L(\cos 5t) \text{ using change } q \text{ scale Ropesty:}$$

$$\text{Soli. } L(\cos t) = \frac{S}{s^2+1} = F(s)$$

$$L(\cos 5t) = \frac{1}{5} \left(\frac{S}{5}\right)^2 + 1$$

$$= \frac{$$

dol:
$$L[f(t)] = \frac{s^2 - s + 1}{(2s + 1)^2(s - 1)} = F(s)$$

 $L[f(2t)] = \frac{1}{2}F(\frac{s}{2})$

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Composition of the Accredited by NBA (B.E - CSE, EEE, ECE, Mech & Composition of the Accredited by NBA (B.E - CSE, EEE, ECE, Mech & COMBATORE-641 035, TAMIL NADU

$$= \frac{1}{2} \left[\frac{(s/2)^2 - (s/2) + 1}{(2s/2 + 1)^2 (\frac{s}{2} - 1)} \right]$$

$$= \frac{1}{2} \left[\frac{s^2 - 2s + 4}{\frac{4}{(s+1)^2 (s-2)/2}} \right]$$

$$= \frac{1}{4} \frac{s^2 - 2s + 4}{(s+1)^2 (s-2)}$$

$$= \frac{1}{4} \frac{(s+1)^2 (s-2)}{(s+1)^2 (s-2)}$$

4) find
$$L(e^{5t})$$
 applying change of scale hoperty.
ADI: $L(e^{t}) = \frac{1}{s-1} = F(s)$
 $L(e^{5t}) = \frac{1}{5} F\left(\frac{s}{5}\right)$
 $= \frac{1}{5} \frac{1}{s-1}$
 $= \frac{1}{5} \frac{s}{s-5}$
 $= \frac{1}{5} \frac{s}{s-5}$

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Composition of the Accredited by NBA (B.E - CSE, EEE, ECE, Mech & Composition of the Accredited by NBA (B.E - CSE, EEE, ECE, Mech & COMBATORE-641 035, TAMIL NADU

Publems on first shifting theorem:

1) Find
$$L(e^{-3t} sin^2 t)$$

Solve $L(e^{-3t} f(t)) = F(sta)$
 $L(e^{-3t} sin^2 t) = L(sin^2 t) s \rightarrow s + 3$
 $= L(\frac{1-\cos 2t}{2}) s \rightarrow s + 3$
 $= \frac{1}{2} \left\{ L(1) - L(\cos 2t) \right\} s \rightarrow s + 3$
 $= \frac{1}{2} \left\{ \frac{1}{s} - \frac{s}{s^2 + 4} \right\} s \rightarrow s + 3$
 $= \frac{1}{2} \left\{ \frac{1}{(s+3)} \frac{s+3}{(s+3)^2 + 4} \right\}$
 $= \frac{2}{(s+3) [(s+3)^2 + 4]}$
 $= \frac{2}{(s+3) [(s+3)^2 + 4]}$

2) Find $L(t^2 e^{-2t})$.

don: $L(e^{-3t} f(t)) = F(s+a)$

 $L(e^{-2t}t^2) = \left[L(t^2)\right]_{S \to S+2}$

 $= \left(\frac{2}{5^3} \right) < 5 < 4$

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Composition of the Accredited by NBA (B.E - CSE, EEE, ECE, Mech & Composition of the Accredited by NBA (B.E - CSE, EEE, ECE, Mech & COMBATORE-641 035, TAMIL NADU

$$= \left(\frac{2}{s^3}\right)_{s \to s+2}$$

$$= \frac{2}{(s+2)^3}$$

$$L\left(\xi^2 e^{-2t}\right) = \frac{2}{(s+2)^3}$$

3) Find
$$L[e^{2t}asst]$$

dol: $L[e^{2t}asst] = L[asst]s \Rightarrow s - 2$

$$= \frac{S}{s^2 + 25}s \Rightarrow s - 2$$

$$= \frac{S - 2}{(s - 2)^2 + 25}$$

$$L[e^{2t}asst] = \frac{S - 2}{(s - 2)^2 + 25}$$

Problems on Second Shifting theorem:

1) Find L[f(t)] where
$$f(t) = \begin{cases} 0 & 0 \le t \le 2 \end{cases}$$

2) Find L[f(t)] = $\int e^{-st} f(t) dt$

2) $e^{-st} f(t) dt + \int e^{-st} f(t) dt$

2) $e^{-st} f(t) dt + \int e^{-st} f(t) dt$

2) $e^{-st} f(t) dt + \int e^{-st} f(t) dt$

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Comp.; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & Comp.; B. Tech.IT) COIMBATORE-641 035, TAMIL NADU

$$= 3 \left[\frac{e^{-st}}{-s}\right]_{2}^{\infty}$$

$$= \frac{3}{s} \left(e^{-\infty} e^{-2s}\right)$$

$$= \frac{3e^{-2s}}{s}$$

$$L[f(t)] = \frac{3e^{-2s}}{s}$$

$$2) \text{ Find the Laplace transform } g$$

$$f(t) = \begin{cases} \sin t, & \cot < \pi \\ 0, & t > \pi \end{cases}$$

$$\int_{t > \pi} \int_{t >$$