SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution
Accredited by NBA — AICTE and Accredited by NAAC — UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

FUNDAMENTALS OF JAVA
[11 YEAR - IVISEM

Topic - Byte Code and JVM




Java Bytecode

TITIond:

hat is Java Bytecode?

Java bytecode is the instruction set for the Java Virtual Machine. It acts similar to an assembler which is an alias representation of a C++
code. As soon as a java program is compiled, java bytecode is generated. In more apt terms, java bytecode is the machine code in the

form of a .class file. With the help of java bytecode we achieve platform independence in java.

How does it works?

Source code

(Piograt) Java file

class file

Machine code Machine code Machine code




Java Bytecode

Advantage of Java Bytecode

Platform independence is one of the soul reasons for which James Gosling started the formation of java and it is this implementation of
bytecode which helps us to achieve this. Hence bytecode is a very important component of any java program.The set of instructions for
the JVM may differ from system to system but all can interpret the bytecode. A point to keep in mind is that bytecodes are non-runnable

codes and rely on the availability of an interpreter to execute and thus the JVM comes into play.

Bytecode is essentially the machine level language which runs on the Java Virtual Machine. Whenever a class is loaded, it gets a stream of
bytecode per method of the class. Whenever that method is called during the execution of a program, the bytecode for that method gets
invoked.Javac not only compiles the program but also generates the bytecode for the program. Thus, we have realized that the bytecode
implementation makes Java a platform-independent language. This helps to add portability to Java which is lacking in languages like C
or C++. Portability ensures that Java can be implemented on a wide array of platforms like desktops, mobile devices, severs and many
more. Supporting this, Sun Microsystems captioned JAVA as "write once, read anywhere" or "WORA" in resonance to the bytecode
interpretation.



Java Virtual Machine

What is JVM?

JVM (Java Virtual Machine) is an abstract machine that enables your computer to run a Java

program.

When you run the Java program, Java compiler first compiles your Java code to bytecode.
Then, the JVM translates bytecode into native machine code (set of instructions that a

computer's CPU executes directly).

Java is a platform-independent language. It's because when you write Java code, it's
ultimately written for JVM but not your physical machine (computer). Since JVM executes the

Java bytecode which is platform-independent, Java is platform-independent.



Java Virtual Machine

What is JVM?

e JVM, i.e., Java Virtual Machine.

¢ JVM is the engine that drives the Java code.

¢ Mostly in other Programming Languages, compiler produce code for a particular system but Java compiler produce
Bytecode for a Java Virtual Machine.

¢ When we compile a Java program, then bytecode is generated. Bytecode is the source code that can be used to run
on any platform.

¢ Bytecode is an intermediary language between Java source and the host system.

e Itis the medium which compiles Java code to bytecode which gets interpreted on a different machine and hence it
makes it Platform/Operating system independent.

JVM's work can be explained in the following manner
¢ Reading Bytecode.

¢ \Verifying bytecode.
e Linking the code with the library.




JVM Architecture

£

/]

Class
Loader

-
Method Nati
Heap Stack PC ative
. Method
heea egiste Stack
\ Runtime Area

Execution
Engine

Native
Method
Interface

S'S

INSTTTUTIONS




Class Loader SubSystem
Loading Linking Initialization
Bootstrap =
- Class Loader Verify
ss 3 ¥ INSTTTUTIONS
File Extension - P nitiakzation
Class Loader Prepare
N v
Application
Class Loader Resolve
Stack Area PC Registers
ch Reg star for Thread 1
Thread 1 Thread 2 Thread n
| PC Register for Tveaa 2 -
Method Native
Area Hoap Ama Method
Stack Frame || Stack Frame Stack Frame Stack
LVAl o1 [ ) LVAI os s LVAI o3 70
| PC Register tor Tweaan
Runtime Data Areas
Execution Engine
JIT Compiler
inte rmediate Code
generator
= Garbage
* Collection S Native Method g
Native Method
Interpreter Gidititbmians Profiler n&r'f‘;ce s
-
TargetCode
Ge nerator




Java Virtual Machine

1. ClassLoader Subsystem

Java's dynamic class loading functionality is handled by the ClassLoader subsystem. It loads, links. and

initializes the class file when it refers to a class for the first time at runtime, not compile time.

1.1 Loading

Classes will be loaded by this component. BootStrap ClassLoader, Extension ClassLoader, and Application
ClassLoader are the three ClassLoaders that will help in achieving it.

1. BootStrap ClassLoader - Responsible for loading classes from the bootstrap classpath, nothing but
rt.jar. Highest priority will be given to this loader.

2. Extension ClassLoader - Responsible for loading classes which are inside the ext folder (jre\lib).

3. Application ClassLoader —-Responsible for loading Application Level Classpath, path mentioned
Environment Variable, etc.

The above ClassLoaders will follow Delegation Hierarchy Algorithm while loading the class files.



Java Virtual Machine

1.2 Linking

1. Verify - Bytecode verifier will verify whether the generated bytecode is proper or not if verification
fails we will get the verification error.

2. Prepare - For all static variables memory will be allocated and assigned with default values.

3. Resolve - All symbolic memory references are replaced with the original references from Method
Area.

1.3 Initialization

This is the final phase of ClassLoading; here, all static variables will be assigned with the original values,
and the static block will be executed.



Java Virtual Machine

2. Runtime Data Area

The Runtime Data Area is divided into five major components:

1. Method Area — All the class-level data will be stored here, including static variables. There is only
one method area per JVM, and it is a shared resource.

2. Heap Area — All the Objects and their corresponding instance variables and arrays will be stored
here. There is also one Heap Area per JVM. Since the Method and Heap areas share memory for
multiple threads, the data stored is not thread-safe.

3. Stack Area - For every thread, a separate runtime stack will be created. For every method call, one
entry will be made in the stack memory which is called Stack Frame. All local variables will be
created in the stack memory. The stack area is thread-safe since it is not a shared resource. The Stack

Frame is divided into three subentities:
gy
1. Local Variable Array — Related to the method how many local variables are involved and the

corresponding values will be stored here.

2. Operand stack — If any intermediate operation is required to perform, operand stack acts as
runtime workspace to perform the operation.

3. Frame data — All symbols corresponding to the method is stored here. In the case of any
exception, the catch block information will be maintained in the frame data.
4. PC Registers — Each thread will have separate PC Registers, to hold the address of current executing
instruction once the instruction is executed the PC register will be updated with the next instruction.

5. Native Method stacks — Native Method Stack holds native method information. For every thread, a

separate native method stack will be created.




Java Virtual Machine

3. Execution Engine

The bytecode, which is assigned to the Runtime Data Area, will be executed by the Execution Engine.
The Execution Engine reads the bytecode and executes it piece by piece.

1. Interpreter - The interpreter interprets the bytecode faster but executes slowly. The disadvantage
of the interpreter is that when one method is called multiple times, every time a new interpretation

is required.

2. JIT Compiler - The JIT Compiler neutralizes the disadvantage of the interpreter. The Execution
Engine will be using the help of the interpreter in converting byte code, but when it finds repeated
code it uses the JIT compiler, which compiles the entire bytecode and changes it to native code. This
native code will be used directly for repeated method calls, which improve the performance of the
system.

1. Intermediate Code Generator - Produces intermediate code

2. Code Optimizer - Responsible for optimizing the intermediate code generated above
3. Target Code Generator - Responsible for Generating Machine Code or Native Code

4. Profiler - A special component, responsible for finding hotspots, i.e. whether the method is
called multiple times or not.



Java Virtual Machine

3. Garbage Collector: Collects and removes unreferenced objects. Garbage Collection can be triggered
by calling system.gc(), but the execution is not guaranteed. Garbage collection of the JVM collects
the objects that are created.

Java Native Interface (JNI): NI will be interacting with the Native Method Libraries and provides the
Native Libraries required for the Execution Engine.

Native Method Libraries: This is a collection of the Native Libraries, which is required for the Execution

Engine.
\ e




Java Runtime Environment

hat is JRE?

JRE (Java Runtime Environment) is a software package that provides Java class libraries,
Java Virtual Machine (JVM), and other components that are required to run Java

applications.

JRE is the superset of JVM.
JRE
JVM + Class Libraries

Java Runtime Environment

If you need to run Java programs, but not develop them, JRE is what you need. You can

download JRE from Java SE Runtime Environment 8 Downloads page.



Java Development Kit

"What is JDK?

JDK (Java Development Kit) is a software development kit required to develop applications
in Java. When you download JDK, JRE is also downloaded with it.

In addition to JRE, JDK also contains a number of development tools (compilers, JavaDoc,
Java Debugger, etc).

JDK

Java Development Kit

If you want to develop Java applications, download JDK.




Relationship between JVM, JRE, and JDK.

JDK

JVM

Class Libraries

Compilers

Debuggers

JavaDoc

Relationship between JVM, JRE, and JDK




