SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution
Accredited by NBA — AICTE and Accredited by NAAC — UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELIGENCE AND MACHINE LEARNING

FUNDAMENTALS OF JAVA
[l YEAR - VISEM

UNIT 3 —Polymorphism and Interface

Topic 3 — Polymorphism

Java Polymorphism
hat Is Polymorphism?

Polymorphism is the concept of
one entity providing multiple
implementations or behaviours.
(Something like an Avatar!)

Java Polymorphism

ﬁmk

“Java And Polymorphism

Java provides
multiple forms of
polymorphism. It
allows you to define
the same method
name to do multiple
different things. It
also allows child
classes to redefine/
override parents’
behaviours for the
same method.

Java Polymorphism

Polymorphism is an important concept of object-oriented programming. It simply LI

more than one form.

That is, the same entity (method or operator or object) can perform different operations in

\

Polymorphism means "many forms”, and it occurs when we have many classes that are related to each other by inheritance.

\

Any Java object that can pass more than one IS-A test is considered to be polymorphic. In Java, all
Java objects are polymorphic since any object will pass the IS-A test for their own type and for the
class Object.

different scenarios.

Compile -Time
Polymorphism

Polymorphism In

Run-Time
Polymorphism

Java Polymorphism
Polymorphism Example

For example, given a base class shape, polymorphism
enables the programmer to define different area
methods for any number of derived classes, such as
circles, rectangles and triangles.

No matter what shape an object is, applying the area
method to it will return the correct results.

Java Polymorphism

// method to render a shape
render() {

System.out.println(“Rendering

¥
}

Square Polygon {

/! renders Square

render () {

System.out.println("Rendering Square...");

}
}

Circle Polygon {

// renders circle

render() {

System.out.println("Rendering Circle...

}
}

Main { (;?:[_)v_ﬁﬂr%)ﬂONS

main(String[] args) {

// create an object of Square
Square s1 = Square();
s1.render();

// create an object of Circle

Circle c1 = Circle();
cl.render();

Output

Rendering Square...
Rendering Circle...

Java Polymorphism

hy Polymorphism?

Polymorphism allows us to create consistent code. In the previous example, we can al
create different methods: renderSquare() and renderCircle() torender Square and Circle ,

respectively.

This will work perfectly. However, for every shape, we need to create different methods. It will

make our code inconsistent.

To solve this, polymorphism in Java allows us to create a single method render() that will

behave differently for different shapes.

Note: The print() method is also an example of polymorphism. It is used to print

values of different types like char , int , string , etc.

We can achieve polymorphism in Java using the following ways:

1. Method Overriding
2. Method Overloading

3. Operator Overloading

= Compile-Time Or Static Polymorphism

Java Polymorphism

Compile-time polymorphism refers to
behaviour that is resolved when your Java
class is compiled.

Method overloading is an example of
compile-time polymorphism. Method
overloading is how you can use method with
same name to do different things based on
the parameters passed.

|

llustration — Method Overloading

class MultiplyFun {
int Multiply(int a, int b)
{ -
return a * b; Output:
) 8
int Multiply(int a, int b, int ¢) 42
{
returna * b * c;
}
}
class Main {
public static void main(String[] args)
{
System.out.printin(MultiplyFun.Multiply(2, 4));
System.out.printin(Multiply Fun.Multiply(2, 7, 3));
}

lllustration — Method Overloading

5% class OperatorOVERDDN {

E s

J

TU71%
void operator(String str1, String str2)
{
String s = str1 + str2;
System.out.printin("Concatinated String - "+ s);
}
void operator(int a, int b)
{
intc=a +Db;
System.out.printin("Sum =" + ¢);
} }
class Main {
public static void main(String[] args)

{

OperatorOVERDDN obj = new
OperatorOVERDDN();
obj.operator(2, 3);
obj.operator("joe", "now");

Output:
Sum=5
Concatinated String - joenow

Java Polymorphism
un-Time Or Dynamic Polymorphism

« Run-time polymorphism refers to
behaviour that is resolved when your Java
class is run by the JVM. Method overriding
by the sub-class is an example of run-time
polymorphism.

- Method overriding allows child
classes to provide their own
implementation of a method also
defined in the parent class.

- The JVM decides which version of the
method (the child’s or the parent’s) to call
based on the object through which the
method is invoked.

llustration — Method Overriding

class Parent { class TestPolymorphisma3 { - TUI1%
void Print() public static void main(String[] args)
{ {
System.out.printin("parent class"); Parent a;
} a = new subclass1();
} a.Print();
class subclass1 extends Parent { a = new subclass2();
a.Print();
void Print() }
{ }

System.out.printin("subclass1");

}
}

class subclass2 extends Parent { Output:
roid Print() subclass1
System.out.printin("subclass2"); el
}

Advantages Of Polymorphism

Code Ease Of
Cleanliness Implementation

Aligned With Overloaded

Real World Constructors

Reusability And
Extensibility

Java Interface

An interface is a fully abstract class. It includes a group of abstract methods (methods

without a body).

We use the interface keyword to create an interface in Java. For example,

Here,

» Language Iis an interface.

» ltincludes abstract methods: zetType() and getvVersion() .

Java Interface

ementing an Interface

Like abstract classes, we cannot create objects of interfaces.

The area of the rectangle is 3

To use an interface, other classes must implement it. We use the implements keyword to

implement an interface.

Example 1: Java Interface

Polygon {
length, breadth);

/f implement the Polygon interface

Rectangle Polygon {
// implementation of abstract method

System.out.println("The area of the rectangle is " + (length * breadth));

In the above example, we have created an interface named Polygon . The interface contains

Main { an abstract method getArea() .
(5tring[] args) {

Rectangle r1 = Rectangle();
r1.getArea(5, 6): Here, the Rectangle class implements Polygon . And, provides the implementation of the

getArea() method.

Java Interface

Example 2: Java Interface

/f create an interface

amminglLangua

// implementation of abstract method
(5tring name) {

tem.out.printlng + name);

Main {
(String[] ar:
ramminglanguage():

Programming Language: Java

o

In the above example, we have created an interface named | Language . The interface includes

an abstract method getName() .

Here, the ProgramminglLanguage class implements the interface and provides the

implementation for the method.

Java Interface

Implementing Multiple Interfaces

In Java, a class can also implement multiple interfaces. For example,

A A{
members of A

B {
members of B

C A, B {
abstract members of A
abstract members of B

Java Interface

xtending an Interface

Similar to classes, interfaces can extend other interfaces. The extends keyword is used for
extending interfaces. For example,

Line {
// members of Line interface

1
r

// extending interface
Polygon Line {
// members of Polygon interface
// members of Line interface

Here, the Polygon interface extendsthe Line interface. Now, if any class implements
Polygon |, it should provide implementations for all the abstract methods of both Line and

Polygon .

Java Interface

Now that we know what interfaces are, let's learn about why interfaces are used in Java.
« Similar to abstract classes, interfaces help us to achieve abstraction in Java.
Here, we know getArea() calculates the area of polygons but the way area is calculated

is different for different polygons. Hence, the implementation of getArea() isindependent

of one another.

« Interfaces provide specifications that a class (which implements it) must follow.

In our previous example, we have used getArea() as a specification inside the interface

Polygon . This is like setting a rule that we should be able to get the area of every polygon.

Now any class that implements the Polygon interface must provide an implementation for

the getArea() method.

Java Interface

» Interfaces are also used to achieve multiple inheritance in Java. For example,

Here, the class Rectangle is implementing two different interfaces. This is how we achieve

multiple inheritance in Java.

Note: All the methods inside an interface are implicitly public and all fields are

implicitly public static final . For example,

// by default public

Java Interface

default methods in Java Interfaces

With the release of Java 8, we can now add methods with implementation inside an

interface. These methods are called default methods.

To declare default methods inside interfaces, we use the default keyword. For example,

// body of getSides()

Why default methods?

Let's take a scenario to understand why default methods are introduced in Java.
Suppose, we need to add a new method in an interface.

We can add the method in our interface easily without implementation. However, that's not
the end of the story. All our classes that implement that interface must provide an

implementation for the method.

If a large number of classes were implementing this interface, we need to track all these

classes and make changes to them. This is not only tedious but error-prone as well.

To resolve this, Java introduced default methods. Default methods are inherited like ordinary
methods.

Let's take an example to have a better understanding of default methods.

Java Packages

TIrIonis

Java Packages & API

A package in Java is used to group related classes. Think of it as a folder in a file directory. We use packages to avoid name conflicts, and to write a better
maintainable code. Packages are divided into two categories:

* Built-in Packages (packages from the Java API)
* User-defined Packages (create your own packages)

Built-in Packages

The Java API is a library of prewritten classes, that are free to use, included in the Java Development Environment.

The library contains components for managing input, database programming, and much much more. The complete list can be found at Oracles website:
https://docs.oracle.com/javase/8/docs/api/.

The library is divided into packages and classes. Meaning you can either import a single class (along with its methods and attributes), or 2 whole package that
contain all the classes that belong to the specified package.

To use a class or a package from the library, you need to use the import keyword:

Java Packages

0 use a class or a package from the library, you need to use the import keyword:

Syntax

import package.name.Class; Jf Import a single class

import package.name.*; J/ Import the whole package

Import a Class

If yvou find a class you want to use, for example, the Scanner class, which is used to get user input, write the following code:

Example

import java.util.Scanner;

In the example above, java.util is a package, while Scanner is a class of the java.util package.

Java Packages

e Scanner class, create an object of the class and use any of the available methods found in the Scanner class documentation. In our
the nextlLine() method, which is used to read a complete line:

Example

Using the Scanner class to get user input:

import java.util.Scanner;

class MyClass {
public static void main(S5tring[] args) {
Scanner myObj = new Scanner(System.in);

System.out.println("Enter username");

String userlame = myObj.nextline();

System.out.println(“Username is: " + userName);

Java Packages

There are many packages to choose from. In the previous example, we used the Scanner class from the java.util package. This package also contains dat
time facilities, random-number generator and other utility classes.

To import a whole package, end the sentence with an asterisk sign (#). The following example will import ALL the classes in the java.util package:

Example

‘ import java.util.*;

Run Example »

User-defined Packages

To create your own package, you need to understand that Java uses a file system directory to store them. Just like folders on your computer:

Example
L root

L mypack
L MyPackageClass.java

To create a package, use the package keyword:

Java Packages

To create a package, use the package keyword:

MyPackageClass.java

package mypack;
class MyPackageClass {
public static void main(String[] args) {
System.out.println("This is my package!");

Run Example »

Save the file as MyPackageClass.java, and compile it:

Then compile the package:

C:\Users\Your Name>javac -d . MyPackageClass.java

Java Packages :

LLTTIT IO S

This forces the compiler to create the "mypack” package.

The -d keyword specifies the destination for where to save the class file. You can use any directory name, like c:/user (windows), or, if you want to keep the package

within the same directory, you can use the dot sign " . ", like in the example above.

Note: The package name should be written in lower case to avoid conflict with class names.

When we compiled the package in the example above, a new folder was created, called "mypack”.

To run the MyPackageClass.java file, write the following:

C:\Users3Your Name>»java mypack.MyPackageClass

The output will be:

This is my package!

