SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution
Accredited by NBA — AICTE and Accredited by NAAC — UGC with ‘A+’ Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ARTIFICIAL INTELLIGEANCE AND MACHINE LEARNING

FUNDAMENTALS OF JAVA

UNIT 2 — Inheritance and Polymorphism

Topic 1 — Inheritance - Introduction

Inheritance 1N Java

Inheritance in Java is a mechanism in which one object acquires all
and behaviors of a parent object.

It is an important part of OOPs (Object Oriented programming system).

The idea behind inheritance in Java is that you can create new classes that
upon existing classes.

When you inherit from an existing class, you can reuse methods and fields
parent class.

Moreover, you can add new methods and fields in your current class also.

Inheritance represents the IS-A relationship which is also known as a p
child relationship.

https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java

Inheritance 1N Java

Why use inheritance in java

o For Method Overriding (so runtime polymorphism can be achieved).

o For Code Reusability.

Terms used in Inheritance

o Class: A class is a group of objects which have common properties. It is a template or blueprint from which
objects are created.

o Sub Class/Child Class: Subclass is a class which inherits the other class. It is also called a derived class,

extended class, or child class.

o Super Class/Parent Class: Superclass is the class from where a subclass inherits the features. It is also called

a base class or a parent class.

o Reusability: As the name specifies, reusability is a mechanism which facilitates you to reuse the fields and
methods of the existing class when you create a new class. You can use the same fields and methods already

defined in the previous class.

Inheritance 1N Java

The syntax of Java Inheritance

class Subclass-name extends Superclass-name

{
//methods and fields

b

The extends keyword indicates that you are making a new class that derives from an existing class. The meaning of

"extends” is to increase the functionality.

In the terminology of Java, a class which is inherited is called a parent or superclass, and the new class is called child or

subclass.

Inheritance 1N Java

Java Inheritance Example

%

Employee

salary: float

N\ 7~)

\

Programmer

bonus:int

\ ¥

As displayed in the above figure, Programmer is the subclass and Employee is the superclass. The relationship between

the two classes is Programmer IS-A Employee. It means that Programmer is a type of Employee.

Inheritance 1N Java

Example:

class Employee{

float salary=40000;

b

class Programmer extends Employee{

int bonus=10000;

public static void main(String args[]){
Programmer p=new Programmer();
System.out.printin("Programmer salary is:"+p.salary);

System.out.printin("Bonus of Programmer is:"+p.bonus);

In the above example, Programmer object can access the field of own class as well as of Employee class i.e. code

reusability.

class Subclass-name extends Superclass-name

{
//methods and fields

b

Programmer salary is:408000.0

Bonus of programmer 1is:10000

Inheritance 1N Java

Example:

class Vehicle {
protected String brand = "Ford";
public void honk() {
System.out.println("Tuut, tuut!");
1 Tuut, tuut!

3 Ford Mustang

class Car extends Vehicle {
private String modelName = "Mustang";
public static void main(String[] args) {
Car myFastCar = new Car();
myFastCar.honk(); {
System.out.println(myFastCar.brand + " ™ + myFastCar.modelName); //methods and fields

} }
¥
o |

Did you notice the protected modifier in Vehicle?

class Subclass-name extends Superclass-name

We set the brand attribute in Vehicle to a protected access modifier. If it was set to private, the Car class would not be able to
access it.

Why And When To Use "Inheritance"?

- It is useful for code reusability: reuse attributes and methods of an existing class when you create a new class.

Inheritance 1N Java
The final Keyword

If you don't want other classes to inherit from a class, use the final keyword:

If you try to access a final class, Java will generate an error:

final class

class extends

The output will be something like this:

Main.java:9: error: cannot inherit from final Vehicle

class Main extends Vehicle {

M

1 error)

Inheritance 1N Java

Types of inheritance in java

On the basis of class, there can be three types of inheritance in java: single, multilevel and hierarchical.

In java programming, multiple and hybrid inheritance is supported through interface only. \

ClassA ClassA ClassA
1) Single 3) Hierarchical
ClassC

2) Multilevel

ClassA

Inheritance 1N Java

ClassB

ClassC

4) Multiple

| [Note: Multiple inheritance is not supported in Java through class.

ClassA

/

ClassB

AN

ClassC

.

ClassD

5) Hybrid

Inheritance 1N Java

Example:

Single Inheritance Example

When a class inherits another class, it is known as a single inheritance. In the example given below, Dog class inherits

the Animal class, so there is the single inheritance.

class Animal{

void eat(){System.out.printin("eating..."); }
b

class Dog extends Animal{

void bark(){System.out.printin("barking..."); }
b

class TestInheritance{

public static void main(String args[]){
Dog d=new Dog();

d.bark();

d.eat();

3

barking...

eating...

Inheritance 1N Java

Multilevel Inheritance Example

When there is a chain of inheritance, it is known as multilevel inheritance. As you can see in the example given below,

BabyDog class inherits the Dog class which again inherits the Animal class, so there is a multilevel inheritance.

class Animal{

void eat(){System.out.printin("eating..."); }

b

class Dog extends Animal{

void bark(){System.out.printin("barking..."); }

¥
class BabyDog extends Dog{

weeping. ..

barking...
void weep(){System.out.printin("weeping...");

>

class TestInheritance2{

eating...

public static void main(String args[])<{
BabyDog d=new BabyDog();

d.weep();

d.bark();

d.eat();

by

Inheritance 1N Java

Hierarchical Inheritance Example

When two or more classes inherits a single class, it is known as hierarchical inheritance. In the example given below,

Dog and Cat classes inherits the Animal class, so there is hierarchical inheritance.

class Animal{

void eat(){System.out.printin("eating...");

¥

class Dog extends Animal{

void bark(){System.out.printin("barking...");
b

class Cat extends Animal{

void meow(){System.out.printin("meowing..."); }
¥

class TestInheritance3{

public static void main(String args[]){

Cat c=new Cat();

c.meow();

c.eat();

//c.bark();//C.T.Error
I

meowing. ..

eating...

Inheritance 1N Java

Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple inheritance is not supported in java.

\

Consider a scenario where A, B, and C are three classes. The C class inherits A and B classes. If A and B classes have

the same method and you call it from child class object, there will be ambiguity to call the method of A or B class.

Since compile-time errors are better than runtime errors, Java renders compile-time error if you inherit 2 classes. So

whether you have same method or different, there will be compile time error.

Inheritance 1N Java

Example:

class A{

void msg(){System.out.printin("Hello"); }

¥

class B{

void msg(){System.out.printin("Welcome"); }
¥

class C extends A,B{//suppose if it were

public static void main(String args[]){
C obj=new C();
obj.msg();//Now which msg() method would be invoked?

Access Modifiers in Jav

Access Modifiers in Java

There are two types of modifiers in Java: access modifiers and non-access modifiers. _]
" Private access modifier

The access modifiers in Java specifies the accessibility or scope of a field, method, constructor, or) ggle of private constructor

class. We can change the access level of fields, constructors, methods, and class by applying the

' Default access modifier
access modifier on it.)

" Protected access modifier
There are four types of Java access modifiers: F Public access modifier

" : . e
1. Private: The access level of a private modifier is only within the class. It cannot be Access Modifier with Method Overriding

accessed from outside the class.

2. Default: The access level of a default modifier is only within the package. It cannot be accessed from cutside the package. If you do not specify any access
level, it will be the default.

3. Protected: The access level of a protected modifier is within the package and outside the package through child class. If you do not make the child class, it
cannot be accessed from cutside the package.

4, Public: The access level of a public modifier is everywhere. It can be accessed from within the class, outside the class, within the package and outside the
package.

There are many non-access modifiers, such as static, abstract, synchronized, native, volatile, transient, etc. Here, we are going to learn the access modifiers only.

Access Modifiers in Jav

Understanding Java Access Modifiers

Let's understand the access modifiers in Java by a simple table.

Private hd M M M
Default Y L N
Protected Y Y hd

Public Y Y hd

Access Modifiers in Jav

1) Private

The private access madifier is accessible only within the class.

Simple example of private access modifier

In this example, we have created two classes A and Simple. A class contains private data member and private method. We are accessing these private members from

outside the class, so there is a compile-time error.

class A{
private int data=40;

private void msg(}{System.out.printin("Hello java");}

¥

public class Simple{

public static void main(String args[]){
A obj=new A();
System.out.printin{obj.data);//Compile Time Error

obj.msg();//Compile Time Error
¥

Access Modifiers in Jav

Role of Private Constructor

If you make any class constructor private, you cannot create the instance of that class from outside the class. For example:

class A{
private A(){}//private constructor
void msg(){System.out.printin{"Hello java"™); }
¥
public class Simple{
public static void main(String args[]){
A obj=new A();//Compile Time Error
¥
¥

_ A Mote: A class cannot be private or protected except nested class.

Access Modifiers in Jav

2) Default

If you don't use any modifier, it is treated as default by default. The default modifier is accessible only within package. It cannot be accessed from outside the

package. It provides more accessibility than private. But, it is more restrictive than protected, and public.

Example of default access modifier

In this example, we have created two packages pack and mypack. We are accessing the A class from outside its package, since A class is not public, so it cannot be

accessed from outside the package.

//save by A.java
package pack;
class A{
void msg(){System.out.printin{"Hello"); }
¥

//save by B.java

package mypack;

import pack.*;

class B{
public static void main(String args[]){
A obj = new A();//Compile Time Error
obj.msg();//Compile Time Error
b

¥

In the above example, the scope of class A and its methed msg() is default so it cannot be accessed from outside the package.

Access Modifiers in Java

3) Protected

The protected access modifier is accessible within package and outside the package but through inheritance only.
The protected access modifier can be applied on the data member, method and constructor. It can't be applied on the class.

It provides more accessibility than the default modifer.

Example of protected access modifier

In this example, we have created the two packages pack and mypack. The A class of pack package is public, so can be accessed from outside the package. But msg

method of this package is declared as protected, so it can be accessed from outside the class only through inheritance.
/fsave by B.java
//save by A.java package mypack;
package pack; import pack.*;
public class A{

protected void msg(){System.cut.printin("Hello"); } class B extends A{
3 public static void main(String args[]){

B obj = new B();
obj.msg(});
¥

h

Access Modifiers in Java

4) Public

The public access modifier is accessible everywhere. It has the widest scope among all other modifiers.

Example of public access modifier

//save by A.java

package pack;
public class A{
public void msg(){System.out.printin{"Hello"}; }

¥

//save by B.java

package mypack;
import pack.®;

class B{
public static void main(String args[]){
A obj = new A();
obj.msg();
¥
¥

Qutput:Hello

Access Modifiers in Jav

Java Access Modifiers with Method Overriding

If you are overriding any method, overridden method (i.e. declared in subclass) must not be more restrictive.

class A{
protected void msg(){System.out.printin{"Hello java");}
¥

public class Simple extends A{
void msg(){System.out.printin{"Hello java®); }//C.T.Error
public static void main(5tring args[])4{

Simple obj=new Simple();

obj.msg();

ks

The default modifier is more restrictive than protected. That is why, there is a compile-time erraor.

