SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution
Accredited by NBA — AICTE and Accredited by NAAC — UGC with ‘A+> Grade
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF AIML

OBJECT ORIENTED PROGRAMMING USING JAVA

UNIT 2 — Basics Features Of Java

Topic 3 — Objects, Class & Methods

5/8/2025

Objects and Classes In Ja

An object in Java is the physical as well as a logical entity, whereas, a cla
logical entity only.

Objects: Real World Examples

What Is an object in Java?

 An entity that has state and behavior
is known as an object e.g., chair,
bike, marker, pen, table, car, etc.

Pencil Apple Book

« It can be physical or logical (tangible
and intangible).

« The example of an intangible object is
the banking system.

5/8/2025

Objects and Classes In Ja

An object has three characteristics:

State: represents the data (value) of an object.

Behavior: represents the behavior
(functionality) of an object such as deposit,
withdraw, etc.

Identity: An object identity is typically
implemented via a unique ID. The value of the
ID is not visible to the external user. However, it
is used internally by the JVM to identify each
object uniquely.

For Example, Pen is an object. Its name is
Reynolds; color is white, known as its state. It is
used to write, so writing is its behavior.

Characteristics of Object

B ES

State

Represents the data
of an object.

Behavior

represents the behavior of an
object such as deposit,
withdraw, etc.

Identity

It is used internally by the JVM
to identify each object uniquely.

Objects and Classes In Ja

An object is an instance of a class. A class is a template or blueprint from which objects are created. So, an object is the

instance(result) of a class.

Object Definitions:
o An object is a real-world entity.
o An object is a runtime entity.

o The object is an entity which has state and behavior.

o The object is an instance of a class.

5/8/2025

Objects and Classes in Ja

What is a class in Java?

« A class is a group of objects which have common
properties. It is a template or blueprint from which
objects are created. It is a logical entity. It can't be

physical.
* Aclass in Java can contain:

» Fields

* Methods

« Constructors
» Blocks

* Nested class and interface

5/8/2025

Class in Java

Fields

Blocks

Nested class
and interface

Objects and Classes In Ja

Defining a Class in Java

Example:
Syntax:
public class Car

public class class_name {
{ public:

Data Members; double color; // Color of a car

Methods; double model; // Model of a car
} }

e Private, Protected, Public is called visibility labels.
e The members that are declared private can be accessed only from within the class.

¢ Public members can be accessed from outside the class also.

5/8/2025

Objects and Classes In Ja

Class Members

Data and functions are members.
Data Members and methods must be declared within the class definition.

Example:

public class Cube

{
int length; // length is a data member of class Cube
int breadth; // breadth is a data member of class Cube
int length ; // Error redefinition of length

}

¢ A member cannot be redeclared within a class.

¢ No member can be added elsewhere other than in the class definition.

5/8/2025

Objects and Classes In Ja

Instance variable in Java

A variable which is created inside the class but outside the method is known as an instance variable. Instance variable doesn't get

memory at compile time. It gets memory at runtime when an object or instance is created. That is why it is known as an instance

\

The new keyword is used to allocate memory at runtime. All objects get memory in Heap memory area.

variable.

new keyword in Java

5/8/2025

Objects and Classes In Ja

Create a Class Create an Object

To create a class, use the keyword class: Example

Create an object called " myObj " and print the value of x:

Main.java

public class Main {
Create a class named " Main " with a variable x: nt x = 5;

_ _ public static void main(String[] args) {
public class Main { Main myObj = new Main():
int x = 5;

; }
}

System.out.println(myObj.x);

5/8/2025

Objects and Classes In Ja
Multiple Objects

You can create multiple objects of one class:

Example

Create two objects of Main :

public class Main {

int x = 5;

public static void main(String[] args) {
Main myObjl = new Main(); // Object 1
Main myObj2 = new Main(); /J/ Object 2
System.out.println(myObjl.x);
System.out.println(myObj2.x);

5/8/2025

Objects and Classes Iin Ja
Using Multiple Classes

You can also create an object of a class and access it in another class. This is often used for better organization of classes (one class
has all the attributes and methods, while the other class holds the main() method (code to be executed)).

Remember that the name of the java file should match the class name. In this example, we have created two files in the same
directory/folder:

» Main.java
» Second.java

Second.java

Main.java
class Second {
public static wvoid main(String|[] args) {
Main myObj = new Main();
System.out.println(myObj.x);

public class Main {
int x = 5;

¥

1
1)

}

5/8/2025

Objects and Classes In Java

When both files have been compiled:

C:\Users\Your Name>Jjavac Maln.java

C:\Users\Your Name>javac Second.java

Run the Second.java file:

C:\Users\Your Name>Jjava Second

And the output will be:

G, 5/8/2025

Objects and Classes In Ja
Java Class Attributes

We used the term "variable" for x in the example (as shown below). It is actually
an attribute of the class. Or you could say that class attributes are variables within a
class:

Example

Create a class called " Main " with two attributes: x and vy :

public class Main {
int x = 5;
int y = 3;

¥

5/8/2025
Another term for class attributes is fields.

Objects and Classes In Ja
Accessing Attributes

You can access attributes by creating an object of the class, and by using the dot syntax (.):

The following example will create an object of the Main class, with the name myObj . We use the x attribute on the object to print its
value:

Example

Create an object called " my0obj " and print the value of x:

public class Main {

int x = 5;

public static void main(String[] args) {
Main myObj = new Main();
System.out.println(myObj.x);

o

5/8/2025

e

Objects and Classes In Ja
Modify Attributes

You can also modify attribute values:

Or override existing values:

Example

Example
Change the value of x to 25:

Set the value of x to 40:

public class Main {

public class Main { int x = 16;

int x;
public static void main(String[] args) {

public static void main(String[] args) { Main myObj = new Main();

Main myObj = new Main(); myObj.x = 25; // x is now 25

myObj.x — 40; System.out.println(myObj.x);

System.out.println(myObj.x); ¥
} }

} 5/8/2025

Objects and Classes In Ja

If you don't want the ability to override existing values, declare the attribute as final:

Example

public class Main {
final int x = 10;

public static void main(String[] args) {
Main myObj = new Main();
myObj.x = 25; // will generate an error: cannot assign a value to a final variable
System.out.println(myObj.x);
}

The final keyword is useful when you want a variable to always store the same value, like PI (3.14159...).
5/8/2025

The final keyword is called a "modifier”.

Objects and Classes In Ja
Multiple Objects

If you create multiple objects of one class, you can change the attribute values in one object, without affecting the attribute values in
the other:

Example

Change the value of x to 25 in myObj2, and leave x in myObjl unchanged:

public class Main {

int x = 5;

public static void main(String[] args) {
new Main(); // Object 1
new Main(); // Object 2

Main myObjl
Main myObj2
myObj2.x = 25;

System.out.println(myObjl.x); // Outputs 5
System.out.println(myObj2.x); // Outputs 25

} 5/8/2025

Objects and Classes In Ja

Multiple Attributes

You can specify as many attributes as you want:

Example

public class Main {

String fname = "John";

String lname "Doe";

int age = 24,

public static wvoid main(String[] args) {

Main myObj = new Main();

System.out.println(“Name: "

System.out.println("Age:

+ myObj.fname + " "

+ myObj.age) ;

+ myObj.1lname);

5/8/2025

Methods In Java
Java Methods

A method is a block of code which only runs when it is called.
You can pass data, known as parameters, into a method.
Methods are used to perform certain actions, and they are also known as functions.

Why use methods? To reuse code: define the code once, and use it many times.

Create a Method

A method must be declared within a class. It is defined with the name of the method, followed by parentheses (). Java provides some
pre-defined methods, such as System.out.println(), but you can also create your own methods to perform certain actions:

Methods In Java

Example

Create a method inside Main:

public class Main {
static void myMethod() {

J// code to be executed

Example Explained

» myMethod() is the name of the method
« static means that the method belongs to the Main class and not an object of the Main class. You will learn more about objects
and how to access methods through objects later in this tutorial.

« void means that this method does not have a return value. You will learn more about return values later in this chapter
5/8/2025

Methods In Java

Call a Method

To call a method in Java, write the method's name followed by two parentheses () and a semicolon;

In the following example, myMethod() is used to print a text (the action), when it is called:

Example

Inside main, call the myMethod() method:

public class Main {
static void myMethod() {
System.out.println("I just got executed!™);

public static void main(String[] args) {
myMethod();

5/8/2025
// Outputs "I just got executed!™

Methods In Java

A method can also be called multiple times:

Example

public class Main {
static void myMethod() {
System.out.println("I just got executed!");

public static void main(String[] args) {
myMethod();
myMethod();
myMethod();

// I just got executed!

// I just got executed!
5/8/2025

// I just got executed!

String[] args means an array of sequence of characters (Strings) that are passed to the "main”
function. This happens when a program is executed.

Example when you execute a Java program via the command line;
java MyProgram This is just a test

Therefore, the array will store: ["This", "is", "just™, "a", "test"]

5/8/2025

Java Method Parameters
Parameters and Arguments

Information can be passed to methods as parameter. Parameters act as variables inside the method.

Parameters are specified after the method name, inside the parentheses. You can add as many parameters as you want, just separate
them with a comma.

The following example has a method that takes a String called fname as parameter. When the method is called, we pass along a
first name, which is used inside the method to print the full name:

5/8/2025

Java Method Parameters
Example

public class Main {
static void myMethod(String fname) {
System.out.println(fname + " Refsnes™);

public static void main(String[] args) {
myMethod("Liam™);
myMethod("Jenny™) ;
myMethod("Anja™);

}

// Liam Refsnes
[/ Jenny Refsnes
// Anja Refsnes

When a parameter is passed to the method, it is called an argument. So, from th& €Xample above: fname is a parameter, while

Liam, Jenny and Anja are arguments.

Java Method Parameters

Multiple Parameters Example

You can have as many parameters as you like: public class Main {
static void myMethod(String fname, int age) {

System.out.println(fname + " is " + age);

¥

public static void main(String[] args) {
myMethod("Liam™, 5);
myMethod("Jenny", 8);
myMethod("Anja", 31);
¥

// Liam is 5
// Jenny 1is 8
// Anja 1is 31

Note that when you are working with multiple parameters, the method call musthawe the same number of arguments as there are
parameters, and the arguments must be passed in the same order.

Java Method Parameters
Return Values

The void keyword, used in the examples above, indicates that the method should not return a value. If you want the method to
return a value, you can use a primitive data type (such as int, char, etc.) instead of void, and use the return keyword inside the
method:

Example

public class Main {
static int myMethod(int x) {

return 5 + X;

public static void main(String[] args) {
System.out.println(myMethod(3));

¥

¥
// Outputs 8 (5 + 3)

5/8/2025

Java Method Parameters

This example returns the sum of a method's two parameters:

Example

public class Main {
static int myMethod(int x, int y) {

return x + vy;

}

public static void main(String[] args) {
System.out.println(myMethod(5, 3));

¥

¥
// Outputs 8 (5 + 3)

5/8/2025

Java Method Parameters

You can also store the result in a variable (recommended, as it is easier to read and maintain):

Example

public class Main {
static int myMethod(int x, int y) {

return x + vy;

public static void main(String[] args) {
int z = myMethod(5, 3);
System.out.println(z);

h

h
// Outputs 8 (5 + 3)

5/8/2025

