

#### SNS COLLEGE OF TECHNOLOGY

Coimbatore-35
An Autonomous Institution

Accredited by NBA – AICTE and Accredited by NAAC – UGC with 'A++' Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

# DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

23AMB201 - MACHINE LEARNING

II YEAR IV SEM

UNIT V – REINFORCEMENT LEARNING

TOPIC 5 - Model Based Learning - Model Free

Learning



Build an Entrepreneurial Mindset Through Our Design Thinking FrameWork

### Introduction to AlphaGo

- Developed by DeepMind
- First AI to defeat a world champion in the game of Go
- Combined Deep Learning and Reinforcement Learning
- Massive breakthrough in AI history



#### Why Go is Challenging for Al

- State space: 10^170 (more than atoms in the universe)
- Requires long-term strategy and intuition
- Reward is sparse (only at game end)
- Traditional brute-force search (like in chess) is ineffective



#### AlphaGo's Core Components

- Policy Network (π): Suggests strong moves
- Improved Policy Network (π'): Learned through self-play
- Value Network (V): Predicts win probability from a board state
- Monte Carlo Tree Search (MCTS): Efficiently explores move sequences



Step 1 Supervised
Learning
(Policy
Network)

Trained on human expert games

Gives
AlphaGo an expert-like base to start

Learns to predict next move from a board state

Technique: Deep CNN + cross-entropy loss

from

# Step 2 - Reinforcement Learning (Improved Policy)

- Self-play: AlphaGo plays against itself
- Learns which moves lead to more wins
- Improves policy beyond human-level
- Technique: Policy Gradient RL



#### Step 3 - Value

#### Network



- Predicts expected outcome (win/loss) from any position
- Trained on outcomes of self-play games
- Eliminates need to simulate till end
- Technique: Deep regression with reinforcement signals



#### Step 4 - Monte Carlo Tree Search (MCTS)

- Monte Carlo Tree Search (MCTS) is the algorithm we use to prioritize and build this search tree. It composes of 4 steps below.
- Simulates future sequences of moves
- Policy Network guides exploration (prioritizes good moves)
   Value Network evaluates board states at tree leaves
   Smart balance between exploration and exploitation





### Policy Network: Overview

 $p_{\sigma/\rho}$  (a|s)



Fig1. of (Silver 2016)

- Convolutional Neural Network
- The network first is trained by supervised learning algorithm and later refined by reinforcement learning
- Trained with KGS dataset.
   29.4 million positions from 160000 games played by KGS 6 to 9 dan





Output is percentage Fig. 2.18 (Otsuki 2017)

- Convolutional Neural Network
- Trained with KGS dataset. 29.4 million positions from 160000 games played by KGS 6 to 9 dan
- 48 Channels (Features) is prepared (Next slide explains details).



Output: Prob. of the next move

 They further trained the policy network by policy gradient reinforcement learning.

Training is done by self-play

 The win rate of the RL policy network over the original SL policy network was 80%



## Summary Table

```
Component | Technique | Purpose

Policy Network | Supervised Learning | Mimic expert moves
Improved Policy | Reinforcement Learning | Improve via self-play
Value Network | Deep RL Regression | Predict game
outcomes |

MCTS | Guided Tree Search | Efficient move exploration
```





Proved RL can solve realworld complex problems Inspired AlphaGo Zero, AlphaZero, MuZero

# Impact of AlphaGo



Techniques used in protein folding (AlphaFold)



Advanced game-playing, robotics, healthcare, and more



AlphaGo = Deep Learning + RL + Self-Play + Search

## Key Takeaways



Breakthrough in strategy game Al



Set the foundation for general-purpose Al systems