

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) Coimbatore.

UNIT V – TOPIC 2

Ohmic & Di-electric Heating

Both **Ohmic Heating** and **Dielectric Heating** (including **Microwave & Radio Frequency Heating**) are **electrothermal technologies** used in food processing. They differ in their heating mechanisms and applications.

1. Ohmic Heating (Joule Heating)

Principle:

- **Direct resistance heating** where an **electric current** passes through the food, generating heat due to its **electrical resistance** (Joule effect).
- Requires the food to be an **electrical conductor** (e.g., liquids, semi-solids with ionic content).

Key Features:

- ✓ Uniform heating minimizes hot/cold spots.
- ✓ **Rapid heating** faster than conventional methods.
- ✓ No heat transfer surfaces reduces fouling.
- ✓ Preserves nutrients & sensory qualities less thermal degradation.

Applications:

- **Pasteurization & Sterilization** (fruit juices, milk, liquid eggs).
- Cooking & Thawing (meats, vegetables).
- Extraction & Fermentation (enhances yields).

Challenges:

- Requires **conductive foods** (not suitable for dry or non-conductive materials).
- **Electrode corrosion** over time.
- Non-uniform heating in heterogeneous foods.

2. Dielectric Heating (Microwave & Radio Frequency Heating)

Principle:

- Uses electromagnetic waves to generate heat by molecular friction:
 - **Microwave (MW) Heating** (300 MHz 300 GHz): Polar molecules (e.g., water) rotate, creating heat.
 - **Radio Frequency (RF) Heating** (1–300 MHz): Ionic conduction and dipole rotation.

Key Features:

- ✓ Volumetric heating heats food from inside out.
- ✓ Fast & energy-efficient reduces processing time.
- ✓ Selective heating depends on dielectric properties.

Applications:

- Drying & Dehydration (fruits, snacks).
- Pasteurization & Sterilization (packaged foods).
- Baking & Cooking (ready-to-eat meals).
- Thawing & Tempering (meat, seafood).

Challenges:

- Uneven heating (hot spots due to wave interference).
- Limited penetration depth (especially in microwaves).
- Safety concerns (leakage, metal interference).

Comparison Table: Ohmic vs. Dielectric Heating

Feature	Ohmic Heating	Dielectric Heating (MW/RF)
Heating Mechanism	Electrical resistance (Joule effect)	Electromagnetic waves (dipole rotation/ionic conduction)
23FTT101/IFT/Ms G M	Iadhumathi, AP/FT	

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) Coimbatore.

Feature	Ohmic Heating	Dielectric Heating (MW/RF)
Energy Source	Alternating Current (AC)	Microwave (MW) or Radio Frequency (RF) waves
Suitable Foods	Conductive liquids/semi- solids	Wide range (depends on dielectric properties)
Heating Uniformity	High (if homogeneous)	Can be non-uniform (hot spots)
Penetration Depth	Depends on conductivity	MW: Shallow; RF: Deeper
Applications	Pasteurization, extraction	Drying, thawing, cooking

Conclusion

- **Ohmic Heating** is ideal for **conductive liquid foods**, offering rapid, uniform heating.
- **Dielectric Heating (MW/RF)** is better for **bulk and packaged foods**, providing fast volumetric heating.
- Both technologies reduce processing time and improve food quality compared to conventional methods.