

UNIT V – TOPIC 3

Role of Technologies

Infrared (IR) Heating

Definition:

Infrared heating is a surface heating method that uses **infrared radiation** (0.78–1000 μ m wavelength) to transfer thermal energy directly to food products.

Principle:

- Heat is transferred by electromagnetic radiation, not by conduction or convection.
- Food absorbs IR energy, increasing molecular vibration, and thus temperature.
- Efficiency depends on wavelength, emissivity of the surface, and absorption by the product.

Types of Infrared Radiation:

- Near IR (NIR): $0.78-1.4 \mu m$ high energy, deep penetration
- Mid IR (MIR): 1.4–3 µm moderate penetration
- Far IR (FIR): $3-1000 \mu m$ low energy, surface heating

Advantages:

- Fast surface heating ideal for thin products
- Energy-efficient direct heat transfer
- Reduced cooking time
- Improved texture and flavor in baked and roasted foods

Applications:

- Baking, roasting, grilling
- Drying of fruits, vegetables, grains
- Surface pasteurization (e.g., nuts, spices)

Limitations:

- Limited penetration depth only effective for thin layers
- Uneven heating if not properly designed
- Risk of surface scorching

□ Irradiation

Definition:

Food irradiation is the process of exposing food to **ionizing radiation** (gamma rays, X-rays, or electron beams) to destroy microorganisms, insects, and parasites and to inhibit sprouting.

Principle:

- Ionizing radiation damages DNA of microorganisms, leading to their death or inability to reproduce.
- The process does **not make food radioactive**.
- Doses measured in Grays (Gy).

Types of Radiation Used:

- 1. **Gamma rays** (from Cobalt-60 or Cesium-137)
- 2. Electron beams (e-beam) high-speed electrons
- 3. X-rays generated by machine (deep penetration)

Advantages:

- Effective sterilization without heat
- Extends shelf life
- Kills pathogens like Salmonella, E. coli
- Reduces postharvest losses (e.g., in fruits and tubers)
- Safe and approved by WHO, FAO, and FDA

Applications:

- **Disinfestation**: Cereals, spices
- Sprout inhibition: Potatoes, onions
- Pathogen reduction: Meat, poultry, seafood
- Sterilization: Medical equipment, packaging

Limitations:

- High initial cost for facility
- Consumer skepticism (labeling as "irradiated" required)
- Slight changes in flavor or texture at high doses

Extra notes :

1. INFRARED HEATING

Basic Principle

- Uses electromagnetic waves ($\lambda = 0.78-1000 \ \mu m$) to transfer heat
- Energy absorbed \rightarrow molecular vibration \rightarrow heat generation
- Three types: Near-IR (0.78-1.4 µm), Mid-IR (1.4-3 µm), Far-IR (3-1000 µm)

Mechanism of Action

- 1. Surface heating: Penetrates 0.1–10 mm depending on wavelength
- 2. Selective absorption: Water, proteins, fats absorb specific IR wavelengths
- 3. Instant heating: No medium required (unlike convection/conduction)

Applications

Application	Examples	Benefits
Drying	Fruits, vegetables, grains	Faster than hot-air drying
Baking/Roasting	Bread, coffee, nuts	Uniform browning
Pasteurization	Surface decontamination of foods	Minimal nutrient loss
Peeling	Tomatoes, almonds	Reduces water/chemical usage

Advantages

- ✓ Energy efficient (up to 80% efficiency)
- ✓ Rapid heating (seconds to minutes)
- ✓ Preserves color/flavor better than conventional methods

Limitations

- **X** Limited penetration depth
- ✗ Possible uneven heating in heterogeneous foods
- ✗ High power requirement for industrial scale

2. FOOD IRRADIATION

Basic Principle

- Uses ionizing radiation to disrupt microbial DNA
- Three types:
 - 1. Gamma rays (from Cobalt-60/Cesium-137) Deep penetration
 - 2. E-beams (accelerated electrons) Shallow penetration
 - 3. X-rays Machine-generated, medium penetration

Mechanism of Action

- Radiation \rightarrow creates free radicals \rightarrow damages cellular DNA/RNA
- **Does not** make food radioactive (approved by WHO/FDA)

Applications & Doses

Dose (kGy)	Application	Target Effect
<1	Insect disinfestation	Kills insects in grains/fruits
1-3	Sprout inhibition	Prevents potato/onion sprouting
3-7	Pathogen reduction	Eliminates Salmonella/E. coli
10-50	Sterilization (space foods)	Complete microbial elimination

Advantages

- ✓ Cold process (minimal heat damage)
- ✓ Extends shelf life 2-3x
- ✓ Effective against pathogens/parasites

Limitations

- **✗** Public perception issues ("radioactive food" myth)
- **✗** High capital cost for facilities
- ✗ Can alter flavor in dairy/meats at high doses

3. KEY COMPARISONS

Parameter	Infrared Heating	Food Irradiation
Energy Type	Non-ionizing radiation	Ionizing radiation
Primary Effect	Thermal	Non-thermal
Depth	Surface (µm–mm)	Bulk (cm-level)
Regulation	Minimal restrictions	Strict dose limits worldwide
Best For	Thermal processing applications	Microbial safety applications

4. CURRENT RESEARCH TRENDS

Infrared Heating

- Hybrid systems (IR + microwave/hot air)
- Wavelength-specific optimization
- AI-controlled precision heating

Irradiation

- E-beam/X-ray alternatives to gamma
- Combined with MAP (Modified Atmosphere Packaging)
- Consumer education initiatives

23FTT101/IFT/Ms G Madhumathi, AP/FT

5. EXAMPLES IN INDUSTRY

- IR: Potato chip pre-drying (PepsiCo), coffee bean roasting (Starbucks)
 Irradiation: Spice sterilization (McCormick), imported fruit quarantine (USDA)