

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) Coimbatore.

UNIT V - TOPIC 4

Role of Technologies

Definition:

Fermentation is a metabolic process in which microorganisms convert **organic substrates** (like sugars) into **alcohol, acids, or gases**, typically under **anaerobic conditions**.

1. Types of Fermenters (Bioreactors)

Type	Description	Applications
1. Batch Fermenter	Closed systemAll nutrients added at startNo additions/removals during process	Antibiotics (penicillin)Yogurt production
2. Fed-Batch	Semi-open systemNutrients added periodicallyProducts removed at end	Baker's yeastRecombinant proteins
3. Continuous	 Open system Fresh medium continuously added Product continuously removed	- Ethanol fuel - Wastewater treatment
4. Solid-State	No free waterSubstrate acts as support (e.g., rice bran)	TempehKoji (soy sauce/miso)
5. Airlift	Gas bubbles provide mixingNo mechanical agitator	Single-cell proteinsVinegar
6. Photobioreactor	Uses light energyFor photosynthetic microbes	Algae biofuelsSpirulina

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) Coimbatore.

2. Benefits of Fermentation

- A. Nutritional Benefits
- **✓** Enhances digestibility:
 - Breaks down anti-nutrients (e.g., phytic acid in sourdough)
 - ✓ Increases bioavailability:
 - Fermented dairy improves calcium absorption
 - **✓** Produces nutrients:
 - Vitamin B12 (in tempeh), K2 (in natto)

B. Health Benefits

- ✓ **Probiotics**: Live cultures support gut microbiome (e.g., kefir, kimchi)
- **✓ Detoxification**:
 - Reduces aflatoxins in grains
 - Lowers cyanide in cassava

C. Food Preservation

- ✓ Extends shelf life via:
 - Acid production (lactic acid in sauerkraut)
 - Alcohol production (wine/beer)
 - Antimicrobial compounds (bacteriocins)

D. Economic/Environmental Benefits

- ♣□ Upcycling: Uses agri-waste (e.g., whey → biogas)
 □ Value addition: Cheap raw materials → premium products (soy → tempeh)
 □ Sustainable: Lower energy than thermal processing
- E. Flavor Enhancement
 - Develops umami (soy sauce), tanginess (yogurt), complexity (cheese)