

SNS COLLEGE OF TECHNOLOGY (An Autonomous Institution) Coimbatore.

UNIT V – TOPIC 5

Role of Technologies

Why Control Fermentation?

- Ensure product consistency
- Enhance **safety** by inhibiting pathogens
- Improve flavor, texture, and shelf life
- Maximize **yield** of desired metabolites
- Prevent undesirable microbial growth

□ Key Parameters for Controlling Fermentation

1. Temperature

- Most fermentations occur between 20°C and 45°C.
- Too low: Slows microbial growth.
- **Too high**: Can kill microbes or promote spoilage organisms.
- **Example**: Yogurt fermentation is controlled at ~42°C for optimal lactic acid production.

2. pH

- Microorganisms have optimal pH ranges (e.g., Lactobacillus: pH 4.0–6.5).
- Low pH helps inhibit spoilage organisms.
- Buffers (like phosphate) or pH adjustments (acid/base addition) are used.

3. Oxygen Availability

- Aerobic vs. Anaerobic conditions:
 - \circ Yeast for bread: aerobic for CO₂, anaerobic for alcohol.
 - Lactic acid bacteria: Mostly anaerobic.
- Controlled using sealed systems, sparging, or agitation.

4. Substrate Concentration

- Adequate nutrients (sugars, proteins) are necessary.
- Overload can lead to off-flavors or inhibition.
- Starter cultures are often added for controlled fermentation.

5. Inoculum Type and Size

- Use of starter cultures ensures specific and safe microbial growth.
- Higher inoculum = faster fermentation and less contamination risk.

6. Time

- Each fermentation has an **optimal duration**.
- Under- or over-fermentation can affect taste, texture, and safety.

□ Technological Controls

Vise of Starter Cultures

- Selected strains with desired traits.
- Outcompete wild microbes, ensure repeatability.

Automated Fermenters

• Monitor and control temperature, pH, oxygen, agitation in real time.

Preservatives and Inhibitors

• Salt, sugar, or acids used to control microbial environment.

V Hygiene and Sanitation

• Cleaning equipment and environment prevents unwanted microbial contamination. 23FTT101/IFT/Ms G Madhumathi,AP/FT

□ Examples of Controlled Fermentations

Product	Microbe	Controlled Parameter
Yogurt	Lactobacillus, Streptococcus	Temp: ~42°C, pH ~4.5
Bread	Saccharomyces cerevisiae	Temp: 25–30°C, anaerobic
Wine	Saccharomyces cerevisiae	Temp: 15–25°C, limited O_2
Sauerkraut	Lactobacillus spp.	Salt concentration, pH, anaerobic
Kombucha	Yeast + acetic acid bacteria	Temp: 20–30°C, aerobic