
Exception Handling in Java

The Exception Handling in Java is one of the powerful mechanism to handle the

runtime errors so that normal flow of the application can be maintained.

Exception Handling is a mechanism to handle runtime errors such as

ClassNotFoundException, IOException, SQLException, RemoteException, etc

Advantage of Exception Handling The core advantage of exception handling is

to maintain the normal flow of the application. An exception normally disrupts

the normal flow of the application that is why we use exception handling.

Let's take a scenario:

statement 1;

statement 2;

statement 3;

 statement 4;0

 statement 5; //exception occurs

 statement 6;

 statement 7;

statement 8;

statement 9;

statement 10;

Suppose there are 10 statements in your program and there occurs an

exception at statement 5, the rest of the code will not be executed i.e. statement 6

to 10 will not be executed. If we perform exception handling, the rest of the

statement will be executed. That is why we use exception handling in Java.

 Pictorial example for exception handling

Types of Java Exceptions

Exceptions can be categorized in two ways:

1. Built-inExceptions

 Checked Exception

 Unchecked Exception

2. User Defined Exception

1. Built-in Exception

Build-in Exception are pre-defined exception classes provided by Java to handle

common errors during program execution.

1.1 Checked Exceptions

Checked exceptions are called compile-time exceptions because these exceptions

are checked at compile-time by the compiler. Examples of Checked Exception

are listed below:

1. ClassNotFoundException: Throws when the program tries to load a class

at runtime but the class is not found because it'sbelong not present in the

correct location or it is missing from the project.

2. InterruptedException: Thrown when a thread is paused and another

thread interrupts it.

3. IOException: Throws when input/output operation fails

4. InstantiationException: Thrown when the program tries to create an

object of a class but fails because the class is abstract, an interface, or has

no default constructor.

5. SQLException: Throws when there's an error with the database.

6. FileNotFoundException: Thrown when the program tries to open a file

that doesn’t exist

1.2 Unchecked Exceptions

The unchecked exceptions are just opposite to the checked exceptions. The

compiler will not check these exceptions at compile time. In simple words, if a

program throws an unchecked exception, and even if we didn't handle or declare

it, the program would not give a compilation error. Examples of Unchecked

Exception are listed below:

1. ArithmeticException: It is thrown when there's an illegal math operation.

2. ClassCastException: It is thrown when you try to cast an object to a class

it does not belongThis to.

3. NullPointerException: It is thrown when you try to use a null object (e.g.

accessing its methods or fields)

4. ArrayIndexOutOfBoundsException: ThisThis occurs when we try to

access an array element with an invalid index.

5. ArrayStoreException: Thishandle happens when you store an object of

the wrong type in an array.

6. IllegalThreadStateException: It is thrown when a thread operation is not

allowed in its current state.

3. User Defined Exceptions.

Sometimes, the built in exceptions in Java are not able to describe a

certain situation. Such cases, users can also create exceptions which are

called used defined Exceptions

Use of try,catch, finally, throw, throws in Exception Handling

try-catch block in Java is a mechanism to handle exceptions. This ensures that the

application continues to run even if an error occurs. The code inside the try

block is executed, and if any exception occurs, it is then caught by the catch

block.

import java.io.*;

class ABC {

 public static void main(String[] args) {

 try {

 // This will throw an ArithmeticException

 int res = 10 / 0;

 }

 // Here we are Handling the exception

https://www.geeksforgeeks.org/exceptions-in-java/

 catch (ArithmeticException e) {

 System.out.println("Exception caught: " + e);

 }

 // This line will executes weather an exception

 // occurs or not

 System.out.println("I will always execute");

 }

}

OUTPUT

Exception caught: java.lang.ArithmeticException: / by zero

I will always execute

Syntax

try {

// Code that might throw an exception

} catch (ExceptionType e) {

// Code that handles the exception

}

1. try in Java

The try block contains a set of statements where an exception can occur.

try

{

// statement(s) that might cause exception

}

2. catch in Java

The catch block is used to handle the uncertain condition of a try block. A try

block is always followed by a catch block, which handles the exception that

occurs in the associated try block.

Catch

{

// statement(s) that handle an exception

// examples, closing a connection, closing

// file, exiting the process after writing

// details to a log file.

}

Internal working of Try-Catch Block

 Java Virtual Machine starts executing the code inside the try block.

 If an exception occurs, the remaining code in the try block is skipped, and

the JVM starts looking for the matching catch block.

 If a matching catch block is found, the code in that block is executed.

 After the catch block, control moves to the finally block (if present).

 If no matching catch block is found the exception is passed to the JVM

default exception handler.

 The final block is executed after the try catch block. regardless of weather

an exception occurs or not.

Example

try{

// this will throw ArithmeticException

int ans = 10/0;

}catch(ArithmeticException e){

System.out.prinln("caught ArithmeticException");

}finally{

System.out.println("I will always execute weather an Exception occur or not");

}

https://www.geeksforgeeks.org/jvm-works-jvm-architecture/
https://www.geeksforgeeks.org/java-program-to-use-finally-block-for-catching-exceptions/

Example:The working try catch block with multiple catch statements

// Java Program to Demonstrate try catch block

// with multiple catch statements

import java.util.*;

class Geeks {

 public static void main(String[] args) {

 try {

 // ArithmeticException

 int res = 10 / 0;

 // NullPointerException

 String s = null;

 System.out.println(s.length());

 }

 catch (ArithmeticException e) {

 System.out.println(

 "Caught ArithmeticException: " + e);

 }

 catch (NullPointerException e) {

 System.out.println(

 "Caught NullPointerException: " + e);

 }

 }

}

Output

Caught ArithmeticException: java.lang.ArithmeticException: / by zero

Example The working of nested try catch block.

import java.util.*;

public class Geeks {

 public static void main(String[] args) {

 try {

 // Outer try block

 System.out.println("Outer try block started");

 try {

 // Inner try block 1

 int n = 10;

 int res = n / 0; // This will throw ArithmeticException

 } catch (ArithmeticException e) {

 System.out.println

 ("Caught ArithmeticException in inner try-catch: " + e);

 }

 try {

 // Inner try block 2

 String s = null;

 System.out.println(s.length()); // This will throw NullPointerException

 } catch (NullPointerException e) {

 System.out.println

 ("Caught NullPointerException in inner try-catch: " + e);

 }

 } catch (Exception e) {

 // Outer catch block

 System.out.println

 ("Caught exception in outer try-catch: " + e);

 } finally {

 // Finally block

 System.out.println("Finally block executed");

 }

 }

}

OUTPUT

Outer try block started

Caught ArithmeticException in inner try-catch: java.lang.ArithmeticException: /

by zero

Caught NullPointerException in inner try-catch: java.lang.NullPointerException

Finally b...

throw and throws in Java

In Java, Exception Handling is one of the effective means to handle runtime

errors so that the regular flow of the application can be preserved. It handles run

time error such

as NullPointerException, ArrayIndexOutOfBoundsException, etc. To

handle these errors effectively, Java provides two key

concepts, throw and throws.

Difference Between throw and throws

The main differences between throw and throws in Java are as follows:

Java throw

The throw keyword in Java is used to explicitly throw an exception from a method

or any block of code. We can throw either checked or unchecked exception. The

throw keyword is mainly used to throw custom exceptions.

Syntax of throw in Java

throw Instance

Where instance is an object of type Throwable

Example:

throw new ArithmeticException("/ by zero");

But this exception i.e., Instance must be of type Throwable or a subclass

of Throwable.

https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/

The flow of execution of the program stops immediately after the throw statement

is executed and the nearest enclosing try block is checked to see if it has

a catch statement that matches the type of exception. If it finds a match,

controlled is transferred to that statement otherwise next enclosing try block is

checked, and so on. If no matching catch is found then the default exception

handler will halt the program.

// Java program to demonstrate

// how to throw an exception

class abc {

 static void fun()

 {

 try {

 throw new NullPointerException("demo");

 }

 catch (NullPointerException e) {

 System.out.println("Caught inside fun().");

 throw e; // rethrowing the exception

 }

 }

 public static void main(String args[])

 {

 try {

 fun();

 }

 catch (NullPointerException e) {

 System.out.println("Caught in main.");

 }

 }

}

Output

Caught inside fun().

Caught in main

Java throws

throws is a keyword in Java that is used in the signature of a method to indicate

that this method might throw one of the listed type exceptions. The caller to these

methods has to handle the exception using a try-catch block.

Syntax of Java throws

type method_name(parameters) throws exception_list

where, exception_list is a comma separated list of all the exceptions which a

method might throw.

In a program, if there is a chance of raising an exception then the compiler always

warns us about it and compulsorily we should handle that checked exception,

Otherwise, we will get compile time error saying unreported exception XXX

must be caught or declared to be thrown. To prevent this compile time error

we can handle the exception in two ways:

1. By using try catch

2. By using the throws keyword

We can use the throws keyword to delegate the responsibility of exception

handling to the caller (It may be a method or JVM) then the caller method is

responsible to handle that exception.

Example 3: Throwing an Exception with throws

// Demonstrating how to throw an exception

class ABC {

 static void fun() throws IllegalAccessException

 {

https://www.geeksforgeeks.org/try-catch-throw-and-throws-in-java/
https://www.geeksforgeeks.org/flow-control-in-try-catch-finally-in-java/

 System.out.println("Inside fun(). ");

 throw new IllegalAccessException("demo");

 }

 public static void main(String args[])

 {

 try {

 fun();

 }

 catch (IllegalAccessException e) {

 System.out.println("Caught in main.");

 }

 }

}

Important Points:

 throws keyword is required only for checked exceptions and usage of the

throws keyword for unchecked exceptions is meaningless.

 throws keyword is required only to convince the compiler and usage of the

throws keyword does not prevent abnormal termination of the program.

 With the help of the throws keyword, we can provide information to the

caller of the method about the exception.

Difference between throw and throws

