

## SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

### **COIMBATORE-35**

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A+ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

### **DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING**

### **COURSE NAME: 23EET204/ ELECTRICAL MACHINES II**

### **II YEAR / IV SEMESTER**

Unit 1 – SYNCHRONOUS GENERATOR

Topic 4,5,6: Synchronous reactance Armature reaction – Phasor diagrams



1.3.2025

23EET204/EM II/Dr.C.Ramakrishnan/ ASP/EEE







# Causes of Voltage drop in Alternator



Armature Effective Resistance ( $R_{eff}$ )

Armature Leakage Reactance ( $X_L$ )

Armature Reactance

1.3.2025

23EET204/EM II/Dr.C.Ramakrishnan/ ASP/EEE









## Armature Leakage Reactance(XL)

**Armature Leakage Reactance(XL)** 

Three major components -Slot leakage reactance, end winding leakage reactance and tooth tip leakage reactance.

Synchronous reactance / phase

$$Xs = X_L + Xa$$

where

Xa is the fictitious armature reaction reactance.

Synchronous impedance/phase Zs = (Ra + jXs)







04/11

# Synchronous Reactance

- The value of X<sub>s</sub> can be determined by measurements of the open-circuit and short-circuit tests
  - > Test are conducted under an unsaturated core condition
  - $\succ$  Open-circuit test is conducted at rated speed with the exciting current  $I_{xn}$ adjusted until the generator terminals are at rated voltage, E<sub>n</sub>
  - $\succ$  Short-circuit test is conducted at rated speed with the exciting current  $I_{xn}$ gradually raised from 0 amps up to the original value used in the open-circuit test
  - > The resulting short-circuit current lsc is measured, allowing the calculation of Xc

$$X_{s} = E_{n}/I_{sc}$$

Where:

- $X_{s}$  = Synchronous reactance per phase[ $\Omega$ ]
- **E**<sub>n</sub> = Rated open circuit voltage line to neutral [V]
- I<sub>sc</sub> = Short-circuit current, per phase, using same exciting current Ixn that was required to produce En [A]









# **Armature Reaction**

### Effect of the armature flux on the main field flux.

Armature Reaction effect depends upon the PF of the Load

UPF - cross magnetizing. Lag PF - demagnetizing. Lead PF - magnetizing

23EET204/EM II/Dr.C.Ramakrishnan/ ASP/EEE



06/11

## UPF(Pure Resistive Load)-cross magnetizing



1.3.2025

23EET204/EM II/Dr.C.Ramakrishnan/ ASP/EEE









## Lagging PF(Purely Inductive Load) Demagnetizing

Lagging PF (Purely Inductive Load) Demagnetizing



### 1.3.2025

### 23EET204/EM II/Dr.C.Ramakrishnan/ ASP/EEE



Main Flux





1.3.2025

23EET204/EM II/Dr.C.Ramakrishnan/ ASP/EEE



9/11



## **KEEP** LEARNING.. Thank u

SEE YOU IN NEXT CLASS

**23EET204/EM II/Dr**.C.Ramakrishnan/ ASP/EEE

1.3.2025



