

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A+ Grade **Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai**

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME: 23EET204 -Electrical Machines II

II YEAR / IV SEMESTER

Unit 4 – STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION MOTOR

Topic 4: Speed Control of Induction motors

25 3 2025

GUESS THE TOPIC NAME...

Introduction to Induction Motor Speed Control

Overview: Induction motors are widely used in industrial applications due to their robustness and simplicity. Controlling their speed is essential for energy efficiency and process optimization.

Common Methods

- V/f Control (Volts per Hertz)
- Stator Voltage Control
- Pole Changing (Dahlander Connection) •
- **Cascaded Connection** •

V/f Control (Volts per Hertz)

Principle: Maintains a constant ratio between the

applied voltage and frequency to keep the magnetic

flux constant, ensuring stable motor operation.

Diagram: Block diagram of open-loop V/f control

system.

Advantages: Simple implementation Suitable for

constant torque applications

Limitations: Not ideal for variable torque loads Open-

loop system lacks feedback for speed regulation

25.3.2025

23EET204/EM II/Dr.C.Ramakrishnan/ ASP/EEE

05/10

Stator Voltage Control

Principle: Adjusts the stator voltage to control the motor speed. The

voltage is typically varied using thyristor-based controllers.

Diagram: Circuit diagram showing thyristor voltage controller.

Advantages: Simple and cost-effective

Provides smooth speed control

Limitations: Less efficient at low speeds

Torque decreases with speed reduction

Pole Changing (Dahlander Connection)

Principle: Changes the number of poles in the stator winding by altering the coil connections, resulting in different synchronous speeds.

Diagram: Winding diagram for pole changing.

Advantages:

Provides discrete speed options

Maintains constant torque across speeds

Limitations:

Requires complex switching mechanisms

Limited to specific speed ratios

Cascaded Connection

Principle: Uses multiple motors connected in series or parallel to

achieve desired speed and torque characteristics.

Diagram: Illustration of cascaded motor connection.

Advantages:

Flexible speed and torque control

Reduces mechanical stress on individual motors

Limitations:

Complex control systems

Higher initial cost

S

25.3.2025

23EET204/EM II/Dr.C.Ramakrishnan/ ASP/EEE

Connections for 4 poles

8/10

Comparison Table

Method	Speed Control Type	Torque Behavior	Complexity
V/f Control	Continuous	Constant	Low
Stator Voltage Control	Continuous	Decreases with speed	Medium
Pole Changing	Discrete	Constant	High
Cascaded Connection	Flexible	Variable	High

23EET204/EM II/Dr.C.Ramakrishnan/ ASP/EEE

Cost

Low

Medium

Medium

High

8/10

Conclusion

Summary: Each speed control method has its unique advantages and is suitable for specific applications. The choice depends on factors like required speed range, torque characteristics, system complexity, and cost.

Recommendation: For applications requiring precise speed control and variable torque, V/f control or cascaded connections are preferable. For simple, cost-effective solutions, pole changing or stator voltage control may be adequate.

KEEP LEARNING.. Thank u

SEE YOU IN NEXT CLASS

23EET204/EM II/Dr.C.Ramakrishnan/ ASP/EEE

25.3.2025

