

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) **COIMBATORE-35** Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23EET104 / ANALOG ELECTRONICS CIRCUITS I YEAR / II SEMESTER

UNIT-V: FEEDBACK AMPLIFIER AND OSCILLATOR

RC PHASE SHIFT OSCILLATOR

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Oscillators produce continuous waveforms autonomously.

Used in clocks, radios, and signal generators.

Main types: sinusoidal and non-sinusoidal oscillators.

What is an RC Phase Shift Oscillator?

Sinusoidal Oscillator with positive feedback Generates smooth sine wave outputs

Transistor Amplifier

Common-emitter or op-amp adds 180° phase shift

23EET104 / AEC / R.SENTHIL KUMAR / EEE

RC phase shift network

Provides 180° phase shift via resistor-capacitor sections

Basic Circuit Diagram

Amplifier

Transistor or operational amplifier

RC Network

Three cascaded resistor-capacitor sections

Power Supply

Provides necessary voltage and current

Output

Continuous sinusoidal waveform

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Components Used

Resistors (R)

Set phase shift and control gain

Capacitors (C)

Work with resistors in phase shift network

Amplifier

BJT or operational amplifier for gain

Power Supply

Supplies energy for oscillation

Working Principle

- •The primary component of an RC phase shift oscillator is a phase shift network consisting of a series of resistors and capacitors.
- •This network generates a phase shift of 180 degrees at the desired oscillation frequency, which is then combined with an additional 180 degrees of phase shift from an amplifier to create a total of 360 degrees phase shift.
- •When the total phase shift is equal to an integer multiple of 360 degrees
- Hence a stable oscillation is achieved.

Frequency of Oscillation

Formula

 $f = 1 / (2\pi RC\sqrt{6})$ for 3 RC stages

R

Resistance controls frequency

С

Capacitance adjusts oscillation rate

Frequency

Dependent on R and C values

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Barkhausen Criteria

Loop Gain ≥ 1

Barkhausen Criterion for Oscillator Vest Attenutor Feedback Circuit Positive Feedback Oscillator

23EET104 / AEC / R.SENTHIL KUMAR / EEE

2

3

4

Amplifier Phase Shift = 180°

RC Network Phase Shift = 180°

Total Phase Shift = 360°

Advantages & Disadvantages

Advantages

- Simple, low cost design
- Good frequency stability ۲

Disadvantages

- Limited to low frequencies
- Amplitude varies with temp/supply

Amplitude

Amplitude

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Audio Frequency Generation

Sine Wave Generators

Function Generators

Signal Modulation Systems

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Conclusion

Low-Frequency Sine Wave Source Easy Implementation Uses basic resistors, capacitors, and amplifiers Relies on Phase Shift & Feedback Positive feedback sustains oscillation

23EET104 / AEC / R.SENTHIL KUMAR / EEE

