

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE-35 Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23EET104 / ANALOG ELECTRONICS CIRCUITS I YEAR / II SEMESTER

UNIT-V: FEEDBACK AMPLIFIER AND OSCILLATOR

WEIN BRIDGE OSCILL& TOR

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Understanding the Wien Bridge Oscillator

The Wien Bridge Oscillator generates stable sinusoidal waves using an RC bridge circuit. It is widely used for low-distortion audio signals, leveraging positive feedback and op-amps.

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Main Components in the Wien Bridge Oscillator

Transistors as an Amplifier

Amplifies the signal and provides necessary gain for oscillations.

Capacitors

C1, C2 create frequency-dependent phase shift in the feedback network.

Resistors

R1, R2 form the bridge; Rf, Rg set amplifier gain.

Power Supply

Provides stable voltage for consistent op-amp operation.

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Wien Bridge Oscillator Circuit

Key Components

- Operational Amplifier (Op-Amp)
- Resistors R1, R2
- Capacitors C1, C2
- Feedback resistor Rf and gain resistor Rg

Signal Flow

The RC bridge provides frequency-selective positive feedback. The output is a sinusoidal waveform sustained by the op-amp gain.

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Working Principle of the Wien Bridge Oscillator

 The Wien Bridge Oscillator uses a feedback network to generate a sinusoidal output.

 It's characterized by a bridge circuit with a series and parallel RC network, which provides a phase shift that, at the resonant frequency, allows positive feedback for oscillation.

•The circuit also includes a gaincontrolling element (like a lamp or transistor) to maintain a stable oscillation amplitude.

Frequency of Oscillation Formula

Formula

 $f = 1 / (2\pi RC)$ where $R = R_1 = R_2$, and $C = C_1 = C_2$

Frequency Control

Accurate oscillation depends on matching R and C components precisely.

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Barkhausen Criteria for Oscillation

Total Phase Shift = 0°

Ensures in-phase feedback for sustained oscillations.

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Feedback Voltage = 1/3 Output

At resonance, feedback network outputs exactly one-third voltage.

Automatic Gain Control Methods

Thermistor or Lamp

Diode Limiter

Provides slow but stable gain control via resistance change.

Offers faster control to stabilize amplitude quickly.

Both techniques keep loop gain close to unity, preserving waveform quality.

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Wien Biridige Occillator

Pros

- Stable frequency Stables, Distruation
- Low distoription
- Senstive distrution, and
- Simple design
- Stimple design
- Ecbillenced

Shakerdiitton moss,

Cons

- Gastired arden's pedil olive, 'a sand yellopts
- Requirred, precisive components
- Softs and befun.
- popeplry arourgy s operations of the second s ilarnthy

Advantages and Disadvantages

Advantages

- Produces very low distortion sine waves
- Good frequency stability
- Easy tuning by adjusting resistors or capacitors •

Disadvantages

- Requires gain control for stable operation
- More complex than RC phase-shift oscillators

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Applications of Wien Bridge Oscillator

Function Generators

 $- \int_{\Gamma}$

Communication Systems

((\op))

Audio Test Equipment

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Summary and Conclusion

Reliable Sinusoidal Output

Wien Bridge Oscillator produces stable low-distortion sine waves.

Frequency Control

Uses phase-selective positive feedback for accurate frequencies.

Wide Usage

Common in labs and audio systems for signal generation.

23EET104 / AEC / R.SENTHIL KUMAR / EEE

