

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) COIMBATORE-35 Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

23EET104 / ANALOG ELECTRONICS CIRCUITS I YEAR / II SEMESTER

UNIT-V: FEEDBACK AMPLIFIER AND OSCILLATOR

CRYSTAL OSCILLATOR

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Understanding Crystal Oscillators

This presentation explores crystal oscillators, vital for stable frequencies in electronics. We cover principles, circuits, advantages, types, and applications. **by Senthil Kumar R.**

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Definition

A crystal oscillator uses a piezoelectric crystal for frequency generation.

Key Features

- Stable and precise frequency
- Long-term reliability
- Common in clocks, microcontrollers, comm devices

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Piezoelectric Effect

Voltage Application

Voltage causes crystal to mechanically vibrate at resonant frequency.

Mechanical Stress

Mechanical stress generates electric charge in crystal.

High Q Resonance

Crystal acts like a high-Q tuned LC circuit.

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Equivalent Circuit of a Crystal

Crystal Oscillator

Represents the crystal's electrical behavior as a series RLC circuit in parallel with capacitance C₀.

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Crystal Oscillator Circuit

Key Components

- Crystal (XTAL)
- Capacitors and resistors
- Transistor or logic inverter
- Feedback network

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Principle of Operation

A crystal oscillator uses a piezoelectric crystal, like quartz, to generate a stable and precise electrical signal at a specific frequency.

This is achieved by applying voltage to the crystal, causing it to vibrate at its natural resonant frequency, which is then converted into an electrical signal.

The crystal's vibrations are sustained by a feedback loop that amplifies and feeds back the signal to the crystal, sustains oscillation.

Frequency Stability

High Q-Factor

Ensures low signal loss and sharp resonance.

Temperature Sensitivity

Low drift with temperature changes.

Aging Effects

Minimal frequency shift over years.

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Advantages and Disadvantages

Advantages

- High frequency accuracy
- Very low phase noise ٠
- Long-term stability

Disadvantages

- Fixed frequency, limited tuning
- Mechanical shock sensitive
- Higher cost than RC/LC oscillators

Piezo Electric in QUARTZ

Applications of Crystal Oscillators

Clocks

Microcontrollers

Crryssteal':

asysiclatones

Watches &

GPS Devices

23EET104 / AEC / R.SENTHIL KUMAR / EEE

Communication Systems

Types and Conclusion

Crystal oscillators deliver precise, stable frequencies vital to modern electronics.

23EET104 / AEC / R.SENTHIL KUMAR / EEE

