Below is the answer key for the MCA-IAE 3 SET A question paper for 19EEB303 -
Microcontroller and Its Applications based on the provided document. The answers are
structured to address each question concisely, aligning with the Bloom's Taxonomy levels
specified (REM, UND, APP, ANA) and the course outcomes (CO4, CO5). Where necessary, |

will provide brief explanations or diagrams as required by the questions.

PART — A (5 x 2 =10 Marks)

1. Describe the bus architecture used in ARM processors and how it affects load/store
efficiency in motor control systems. (GATE EC 2024) [CO4, UND]

Answer:

ARM processors use the AMBA (Advanced Microcontroller Bus Architecture), primarily
with AHB (Advanced High-performance Bus) and APB (Advanced Peripheral Bus). The
AHB handles high-speed data transfers between the CPU, memory, and peripherals, while
the APE manages low-speed peripheral communication. In motor control systems, the
AHB's high bandwidth ensures efficient load/store operations for real-time data (e.g., PWM
signals), reducing latency and improving control precision. The pipelined nature of AHB

enhances throughput for frequent data transfers in motor control tasks.

2. Recall the term Arduino and mention its importance. [CO4, UND]

Answer:

Arduino is an open-source microcontroller platform used for building electronic projects. It

consists of hardware (microcontroller boards) and software (Arduino IDE).

Importance:

" Simplifies prototyping with user-friendly programming.
" Enables rapid development of embedded systems for applications like loT, robotics, and

automation.




3. Define Micro C. [CO4, UND]

Answer:

Micro C is a high-level programming language (a subset of C) designed for programming
microcontrollers. It provides simplified syntax and libraries tailored for embedded systems,

enabling efficient control of hardware peripherals like timers, ADC, and PWM.

4. State two critical safety applications of Arduino in smart prosthetics. (GATE IN 2023)
[CO5, UND]

Answer:

1 ‘Real-time feedback control: Arduino processes sensor data (e.g., pressure or EMG
signals) to adjust prosthetic limb movements, ensuring safe and precise operation.
2 Emergency shutdown: Arduino monitors system faults (e.g., overcurrent or overheating)

and triggers a safe shutdown to prevent injury to the user.

5. Identify the use of Arduino Uno for a portable ECG signal preprocessing unitina
telemedicine kit. (GATE IN 2022) [COS5, APP]

Answer:

Arduino Uno is used in a portable ECG signal preprocessing unit to:

" Acquire analog signals from ECG sensors via its ADC pins.
* Filter and amplify signals using software algorithms (e.g., noise reduction).
" Transmit preprocessed data to a telemedicine platform via serial communication or

wireless modules (e.g., Bluetooth), enabling remote monitoring.

PART - B (2 x 13 = 26 Marks & 1x 14 = 14 Marks)

6(a). Analyze how ARM’s memory management unit (MMU) plays a key role in building an
embedded system for MRI imaging data logging. (GATE EC 2022) [CO4, ANA, 13 Marks]



Answer:

The ARM Memory Management Unit (MMU) is critical for MRI imaging data logging due to
its role in memory virtualization, protection, and efficient data handling. Below is an analysis

of its key contributions:

1"M’irtt.lal Memory Management:

" The MMU translates virtual addresses to physical addresses using page tables,
allowing the MRI system to manage large datasets (e.g., imaging data) efficiently.
" It supports multitasking by isolating memory spaces for different processes (e.g.,

data acquisition, processing, and logging).
¢ Memory Protection:

" The MMU enforces access permissions, preventing unauthorized access to critical
memory regions (e.g., where sensitive MRI| data is stored).

" This ensures data integrity and prevents corruption during high-speed logging.
3 Efficient Data Handling:

" The MMU supports caching mechanisms, reducing access latency for frequently
used data (e.g., image buffers).
" It enables demand paging, allowing the system to load only reguired data into RAM,

optimizing memory usage for large MR| datasets.

4 Real-time Performance:

" The MMU's translation lookaside buffer (TLB) speeds up address translation, critical
for real-time data logging in MRI| systems.
" It ensures deterministic performance for time-sensitive tasks like data sampling and

storage.
5 Error Handling:

" The MMU detects and handles memory access violations, ensuring system reliability

during continuous MRI data logging.



Application in MRI: The MMU enables the ARM processor to handle high-resolution imaging
data, manage real-time tasks, and ensure secure, efficient logging to storage devices,

making it ideal for embedded MRI systems.

6(b). Interpret the addressing modes of ARM with examples. [CO4, UND, 13 Marks]

Answer:

ARM processors support various addressing modes to access operands efficiently. Below

are the key addressing modes with examples:

1 ‘Immediate Addressing:

" The operand is a constant embedded in the instruction.
" Example: MOV RO, #3xFF (Moves the immediate value OxFF to register RO).

< Register Addressing:

" The operand is stored in a register.
" Example: ADD R2, R1, R@ (Adds the contents of RO and R1, stores the result in R2).

3 Direct Addressing:

* The operand is accessed directly from a memory address.
" Example: LDR RO, [0x1008] (Loads the value at memory address 0x1000 into RO).

4 Register Indirect Addressing:

" The memory address is stored in a register.
" Example: LDR R1, [R2] (Loads the value at the address stored in R2 into R1).

5 Base-Indexed Addressing:

* The address is computed by adding an offset to a base register.
" Example: LDR R@, [R1, #4] (Loads the value at address R1+ 4 into RO).



6 Pre-Indexed Addressing:

" The address is computed as base + offset, and the result is stored back in the base
register.

" Example: LDR RO, [R1, #41! (Loads the value at R1+ 4 into RO and updates R1to R1
+4).

7 Post-Iindexed Addressing:

" The address is used as is, but the base register is updated afterward.
" Example: LDR RO, [R1], #4 (Loads the value at R1into RO, then increments R1by 4).

8 PC-Relative Addressing:

" The address is relative to the program counter (PC).
" Example: LDR RO, [PC, #8] (Loads the value at PC + 8 into RO, used for accessing
constants in code).

Significance: These addressing modes provide flexibility in accessing data, optimizing
memory operations, and supporting complex embedded system tasks like signal processing
or control.

7(a). Explain about Arduino hardware with necessary diagram. [CO5, UND, 13 Marks]

Answer:

Arduino Hardware Overview:

Arduino is a microcontroller platform with hardware components designed for easy
prototyping. The Arduino Uno, a popular board, is based on the ATmega328P
microcontroller. Below is an explanation of its key hardware components, followed by a

textual description of the diagram.

Key Components:



1‘Micrncnntrnller (ATmega328P):

" The core processing unit, an 8-bit AVR RISC-based microcontroller with 32 KB flash
memory, 2 KB SRAM, and 1 KB EEPROM.

" Executes user programs and interfaces with peripherals.
2 .
Power Supply:

" USB (5V) or external power (7-12V via barrel jack).
" Onboard voltage regulators provide 5V and 3.3V outputs.

3 Digital I/O Pins:

" 14 digital pins (6 support PWM) for input/output operations (e.g., controlling LEDs,

reading switches).

4 Analog Input Pins:

" 6 analog inputs (10-bit ADC) for reading analog sensors (e.g., temperature, light).
5 Crystal Oscillator:

" 16 MHz clock for timing operations.
6 USB Interface:

" For programming and communication with a computer via the Arduino IDE.
7 Other Components:

" Reset button, power LED, TX/RX LEDs, and ICSP header for in-circuit programming.

Diagram Description (since image generation is not directly supported):



" The Arduino Uno board is rectangular with labeled components.
" Top Left: USB port for power and programming.

" Top Right: Barrel jack for external power.

" Center: ATmega328P microcontroller chip.

" Left Side: Analog pins (AO-A5).

" Right Side: Digital pins (0-13, with PWM pins marked).

" Bottom: Power pins (GND, 5V, 3.3V, Vin).

" Center Left: Reset button and crystal oscillator,

" LEDs: Power LED (near power pins) and TX/RX LEDs (near digital pins).

This hardware enables Arduino to interface with sensors, actuators, and communication
modules, making it versatile for embedded applications.

7(b). Design a fallback system using Arduino to manually override voltage control when
ARM fails, and justify its response capability. (GATE loT Scenario 2024) [COS5, APP, 13
Marks]

Answer:

Design of Fallback System Using Arduino:

The fallback system uses an Arduino Uno to manually override voltage control in case of an
ARM processor failure in a voltage regulation system (e.qg.. for a motor or power supply).
Below is the design and justification:

System Design:



1 ‘Components:

" Arduino Uno (ATmega328P).

" Voltage sensor (e.g., voltage divider with ADC input).
* Manual override switch (push-button).

" Relay or MOSFET for controlling output voltage.

" LCD or LEDs for status indication.

" Backup power supply (e.g., battery).
¢ Operation:

" Normal Mode: The ARM processor controls the voltage (e.g., via PWM to a regulator).
The Arduino monitors the ARM’s status via a heartbeat signal (a periodic pulse sent
by ARM to an Arduino digital pin).

" Failure Detection: If the heartbeat signal stops (indicating ARM failure), the Arduinc
activates the fallback mode.

" Fallback Mode:

" The Arduino reads the voltage sensor via an analog pin (e.g., AO).

" A manual override switch (connected to a digital pin, e.g., D2) allows the user to
set a predefined voltage level (e.g., via a potentiometer or fixed value).

" The Arduino adjusts the output voltage using PWM (e.g., Pin 9) to control a relay
or MOSFET.

" Status is displayed on an LCD (e.g., “ARM Failed, Manual Mode”).

3 Arduino Code Outline:



<
dl
m)l

jtdefine HEARTBEAT_PIN 2
jtdefine VOLTAGE_SENSOR A
ftdefine OVERRIDE _SWITCH 3
#define PWM_OUTPUT 9

void setup() 1
pinMode (HEARTBEAT _PIN, INPUT);
pinMode (OVERRIDE_SWITCH, INPUT_PULLUP);
pinMode (PWM_OUTPUT, OUTPUT);
Serial begin(9600);

[

void loop()} 1
if (digitalRead(HEARTBEAT_PIN) == LOW) {1 // ARM failure detected
if {digitalRead(OVERRIDE_SWITCH) == LOW) { // Manual override triggered
int voltage = analogRead(VOLTAGE_SENSOR); // Read voltage
int pwmValue = map(voltage, O, 1023, @, 255); // Map to PWM
analogWrite (PWM_QUTPUT, pwmValue); // Control voltage
Serial.println("Manual Mode Active");

lustification of Response Capability:

" Reliability: The Arduino Uno's simple architecture ensures robust operation even if the
ARM fails, as it operates independently with its own power and processing.

" Real-time Response: The ATmega328P’s 16 MHz clock and fast ADC (10-bit, ~100 ps
sampling) enable quick voltage monitoring and control (response time <1 ms).

" User Control: The manual override switch allows immediate user intervention, critical for
safety in voltage-sensitive applications.

" Scalability: The system can be extended with additional sensors or communication
modules (e.q., Bluetooth) for remote monitoring.

" Cost-Effectiveness: Arduino’s low cost makes it a practical choice for a fallback system.



This design ensures safe and reliable voltage control during ARM failure, with fast response

and user-friendly operation.

8(a). Analyze how an ARM processor can be programmed to detect phase faultsin a
transmission line using digital I/O interrupts. (GATE EE Embedded 2023) [CO4, ANA, 14
Marks]

Answer:;

Analysis of ARM Programming for Phase Fault Detection:

Phase faults in a transmission line (e.q., single-phase-to-ground or phase-to-phase faults)
cause abnormal voltage or current levels. An ARM processor (e.g., Cortex-M series) can
detect these faults using digital I/O interrupts for real-time monitoring. Below is an analysis

of the approach:



1 ‘System Setup:

" Sensors: Current transformers (CTs) or voltage transformers (VTs) measure phase
currents/voltages (for three phases: A, B, C).

" Signal Conditioning: Analog signals are converted to digital levels (e.q., using
comparators or ADCs) to interface with ARM’s digital /O pins.

" ARM Processor: A Cortex-M4 (e.g., STM32) with GPIO pins configured for interrupt-

driven input.
- Interrupt Configuration:

" GPIO Pins: Assign three digital input pins (e.g., PAD, PA1, PA2) for phase A, B, and C
fault signals.

" Interrupt Mode: Configure pins for edge-triggered interrupts (rising/falling edge
based on fault threshold crossing).

" NVIC (Nested Vectored Interrupt Controller): Enable interrupts in the ARM’s NVIC

with appropriate priority to ensure real-time response.
3 Fault Detection Logic:

" Threshold Detection; The signal conditioning circuit generates a digital high/low
signal when a phase’s current/voltage exceeds a predefined threshold (indicating a
fault).

" Interrupt Service Routine (ISR):

" When a fault signal triggers an interrupt, the ISR identifies the faulty phase (e.g.,
by checking which pin triggered).
" Logs fault details (timestamp, phase, and fault type) to memory.

" Triggers protective actions (e.g., relay trip via another GPIO pin).

4 Programming Example (Pseudo-Cade):



¢
dl

)

void GPIO_Init() 4
/{ Configure GPIO pins PAG®, PAl, PA2 as inputs with interrupts
GPI0_SetMode(PA@, INPUT, EDGE_RISING);
GPIO_SetMode(PA1l, INPUT, EDGE_RISING);
GPIO_SetMode(PA2, INPUT, EDGE_RISING);
NVIC_EnableIRQ(GPIO_IRQn); // Enable interrupt in NVIC

void GPIO_IRQHandler() 4
if (GPIO_PinStatus(PA@) == HIGH) {
// Phase A fault detected
LogFault("Phase A Fault", getTimestamp());
GPIO_SetPin(PB@, HIGH)}; // Trip relay
3
if (GPIO_PinStatus(PAl) == HIGH) {
[/ Phase B fault detected
LogFault("Phase B Fault", getTimestamp());
GPIO_SetPin(PB@, HIGH);
I
if (GPIO_PinStatus(PA2) == HIGH) {
// Phase C fault detected
LogFault("Phase C Fault", getTimestamp());
GPIO_SetPin(PB@, HIGH);
I
ClearInterruptFlags(); // Clear interrupt flags
t

int main() {
SystemInit();
GPIO_Init();
while (1) {
/{ Main loop for other tasks

4



5 Advantages of Using ARM with Interrupts:

" Real-time Response: Interrupts ensure immediate fault detection (latency <1 ps),
critical for preventing damage in transmission lines.

" Scalability: ARM’s multiple GPIO pins and NVIC support simultaneous monitoring of
multiple phases.

" Low Power: Cortex-M's low-power modes reduce energy consumption during idle
states.

" Flexibility: The ARM can integrate additional tasks (e.g., communication with SCADA
systems) alongside fault detection.

6 Challenges and Mitigation:

" False Triggers: Use debouncing or filtering in hardware/software to avoid noise-
induced interrupts.

" Interrupt Overload: Prioritize interrupts in NVIC to ensure critical faults are handled
first.

" Data Logging: Use DMA (Direct Memory Access) to offload data logging, freeing the
CPU for interrupt handling.

Conclusion: The ARM processor’s interrupt-driven GP1O system enables fast, reliable phase

fault detection, ensuring timely protective actions and system stability in transmission lines.

8(b). Analyze one application related to healthcare using Arduino with a neat sketch.
[CO5, APP, 14 Marks]

Answer:

Application: Arduino-Based Pulse Oximeter for Oxygen Saturation Monitoring

A pulse oximeter measures blood oxygen saturation (Sp0O2) and heart rate, critical for
monitoring patients with respiratory conditions (e.g., COVID-19 or COPD). An Arduine Uno

can be used to build a low-cost, portable pulse oximeter for healthcare applications.

System Design:



L ‘Components:

" Arduino Uno (ATmega328P).

" MAX30102 sensor (for SpO2 and heart rate).
" OLED display (128x64, 12C interface).

" Buzzer for alerts (e.g., low Sp02).

" Power supply (USB or battery).
2 Operation:

" The MAX30102 sensor uses red and infrared LEDs to measure light absorption
through a finger, calculating SpO2 and heart rate.

" The Arduino reads sensor data via 12C (pins A4, A5).

" Algorithms in the Arduino process raw data to compute SpO2 and heart rate.

" Results are displayed on the OLED, and a buzzer alerts if Sp0O2 falls below a threshold
(e.g., 90%).

3 Arduino Code Outline:




><
]

m

jinclude <Wire.h>

#include <Adafruit GFX.h>
#tinclude <Adafruit SSD1306.h>
#include <MAX30105.h>

MAX30105 pulseSensor;
Adafruit S5D130¢ display(128, 64, EWire, -1);

void setup() 1
Serial.begin (9600} ;
pulseSensor.begin(Wire, I2C_SPEED_FAST): // Initialize MAX38102

display.

begin(55D1306_SWITCHCAPVCC, @x3C); // Initialize OLED

pinMode (9, QUTPUT}; // Buzzer pin

5

void loop() 1
pulseSensor.getIR(); // Read IR data
float spo2 = calculateSp02(); // Custom function to compute SpD2
int heartRate = calculateHeartRate():; // Custom function for heart rate

display.
display.
display.
display.
display.
display.
display.

clearDisplay();

setTextSize(l);

setfursor(B, O@);

print("Sp02: "); display.print(spo2); display.print("%");
setCursor(@, 10);

print("HR: "); display.print(heartRate); display.print(" bpm");
display();

if (spo2 < 90) {
digitalWrite(9, HIGH); // Trigger buzzer

! else {

digitalWrite(9, LOW);

t

delay(1000);

Sketch Description (since image generation is not supported):



" The Arduino Uno is at the center of the system.
" Left Side: MAX30102 sensor connected to A4 (SDA) and A5 (SCL) for 12C

communication.

" Right Side: OLED display connected to A4 (SDA) and A5 (SCL).

" Top: Buzzer connected to digital pin D9.

" Bottom: Power supply (USB or 9V battery) connected to the barrel jack.

" Connections: Wires link the sensor and display to the Arduino, with a finger placed on
the MAX30102 for measurement.

Analysis of Application:

" Accuracy: The MAX30102 provides reliable SpO2 and heart rate data, validated against
clinical standards.

" Portability: The compact Arduino-based system is ideal for home or remote healthcare.

" Cost-Effectiveness: Low-cost components make it accessible for widespread use.

" Real-time Monitoring: The system updates readings every second, enabling timely alerts
for critical conditions.

" Scalability: Can be integrated with Bluetooth for data transmission to smartphones or

cloud platforms.

This Arduino-based pulse oximeter is a practical healthcare scolution, offering affordable and

reliable monitoring for patients.

Notes:

" The answers are tailored to the Bloom’s Taxonomy levels (REM, UND, APP, ANA) and
course outcomes (CO4, COS5).

" Diagrams are described textually, as image generation requires user confirmation, which
was not provided.

" If you need further clarification or specific details (e.g., code expansion or diagram
generation), please let me know!



