19MEE311 – LSSSCM – ANSWER KEY

SET A

$PART - A (5 \times 2 = 10 \text{ Marks})$

1. Define supply chain fulcrum

The supply chain fulcrum refers to the strategic balance point between supply and demand in a supply chain. By shifting this point through better responsiveness or lean operations, companies can optimize inventory, reduce costs, and improve service levels.

2. Difference between demand management and demand planning

- o **Demand Management**: Broader strategy that includes influencing and aligning demand with supply (e.g., promotions, pricing).
- Demand Planning: A forecasting process using data analytics and historical trends to predict future demand.

3. Explain the route map to responsiveness

- o Reduce lead times
- o Increase visibility and collaboration
- Adopt agile practices (flexibility, postponement)
- o Use technology and real-time data
- o Implement supply chain segmentation

4. Simplify the 'Quick response' logistics (Amazon)

Amazon uses predictive analytics, real-time inventory tracking, warehouse automation (e.g., Kiva robots), and same-day delivery options to provide fast, efficient customer service.

5. The future of global sourcing (McKinsey)

- o Diversification of sourcing base
- Nearshoring and friend-shoring
- o Sustainability and ethical sourcing
- o Use of digital sourcing platforms and AI
- o Risk mitigation post-COVID and geopolitical instability

PART – B (Split-up: 13 Marks Each)

Q6. Responsive Supply Chain & Lead Time Gap

(a) Developing a Responsive Supply Chain

Content	Marks
Introduction to responsive supply chain	2
Concept of lead-time gap and its reduction	3
Role of demand visibility (e.g., POS data, CPFR)	3
Agile practices (e.g., postponement, modular design)	3

Content	Marks
Conclusion with benefits	2

(b) Real-World Examples & Supply Chain Models

Content	Marks
Introduction to responsiveness	2
Lean vs. Agile supply chain models	3
Case study: Dell (agile customization), Zara (fast fashion)	3
Push–Pull strategy or SCOR model	3
Conclusion with industry relevance	2

Q7. Role of IT in Lean & Agile Supply Chains

(a) Evaluation of IT in Lean and Agile Supply Chains

Content	Marks
IT's role in supply chain efficiency	2
Lean: ERP, Kanban systems, JIT enabled by IT	3
Agile: EDI, real-time tracking, cloud SCM	3
Examples: Toyota (lean), Amazon (agile)	3
Conclusion	2

(b) IT systems for QR, Global Complexity, Visibility

Content	Marks
QR logistics and IT: RFID, real-time dashboards	3
Global complexity: multi-tier SCM tools, TMS, WMS	3
Visibility: IoT, blockchain, control towers	3
Example: Amazon global logistics, DHL smart logistics	3
Conclusion	1

Q8. Demand Management and IT (Amazon)

(a) Achieving Responsiveness through Demand Management + IT

Content	Marks
Importance of demand management	2
IT support: forecasting tools, CRM, data analytics	3
Amazon case: anticipatory shipping, real-time data	3

Content	Marks
Coordination: suppliers, warehouses, last-mile	3
Conclusion	2

(b) Japanese Philosophy + Software Sector (Adobe)

Content	Marks
Japanese concepts: Kaizen, Just-in-Time, flexibility	3
Application to supply chain responsiveness	3
Adobe case: Agile development, cloud delivery, customer data	3
Benefits: faster response, user-driven features	3
Conclusion	1

19MEE311 – LSSSCM – ANSWER KEY

SET B

? PART – A (5 × 2 = 10 Marks)

1. Define forecast capacity

The ability of an organization to estimate future demand using analytical tools and data, ensuring capacity and resources are aligned with projected requirements.

2. Formulate the lead time gap

Lead Time Gap = Logistics Lead Time – Customer Order Cycle Time

This gap indicates how far supply capabilities lag behind customer expectations.

- 3. State the product 'push' versus demand 'pull'
 - o **Push:** Products are made based on forecasted demand.
 - Pull: Production and distribution are based on actual customer demand signals.

4. Mention the basic in virtual lean supply chain (Amazon)

- Use of AI and big data
- Cloud-based platforms (AWS)
- o Minimal inventory, just-in-time fulfillment
- o Digital coordination of logistics and warehousing

5. Explain about marketing logistics (Amazon)

Integration of logistics with marketing strategies through personalized services, fast delivery (Prime), real-time order tracking, and customer-driven fulfillment.

PART − B (Each 13 Marks)

Q6. Adobe and Responsiveness

(a) Adobe's Supply Chain Responsiveness and Agility (Digital Product Environment)

Sub-Content	Marks
Intro to digital supply chains	2
Adobe's move to subscription/SaaS model	2
Continuous updates via agile DevOps	2
Real-time customer usage data and feedback loops	2
Use of cloud infrastructure (e.g., Adobe Cloud)	2
Supply-demand balance in digital content	2

Sub-Content Marks

Conclusion: Improved responsiveness and engagement 1

(b) Demand Planning and Pull-Based Strategies at Adobe

Sub-Content	Marks
Explanation of demand planning in digital delivery	2
Forecasting usage patterns via data analytics	2
Pull logistics in SaaS (on-demand updates, downloads)	2
Customer-centric development pipeline	2
IT-enabled product life cycle (Agile, DevOps)	2
Impact on cost and user experience	2
Summary	1

Q7. IT and Quick Response / McKinsey Digital Advice

(a) IT in Quick Response Logistics for Lean Global Supply Chains

Sub-Content	Marks
Define QR logistics in lean environments	2
Role of IT in reducing lead time	2
Tools: EDI, ERP, cloud logistics, AI	2
Real-time tracking (IoT, GPS, RFID)	2
Inventory sync and dynamic routing	2
Case example: Zara, Amazon, Toyota	2
Conclusion	1

(b) McKinsey's Digital Tools for Complexity Reduction and Responsiveness

Sub-Content	Marks
Global supply chain complexity challenges	2
McKinsey's digital strategies overview	2
Advanced analytics, AI, scenario simulation	2
Supply chain control towers and dashboards	2
RPA and smart automation tools	2
Industry case: Consumer goods or automotive	2
Summary	1

Q8. Amazon or Deloitte: Lead Time & Product Design Complexity

(a) Amazon's Strategy for Reducing Lead-Time Gap & Demand Visibility

Sub-Content	Marks
Define lead time gap and visibility	2
Amazon's anticipatory shipping model	2
Use of real-time customer data and ML	2
Fulfillment centers and geographic placement	2
Warehouse robotics and automation (Kiva)	2
Prime and last-mile delivery optimization	2
Conclusion	1

(b) Product Design and Complexity (Deloitte's IT Solutions)

Sub-Content	Marks
How product design causes SC complexity	2
Modular vs. customized design trade-offs	2
Deloitte's recommendation: PLM, digital twins	3
IT for early visibility into design impact	2

Sub-Content	Marks
Standardization and global compliance tools	2
Managing SKUs, forecasting via Al	2
Conclusion	1