19MEO302 – **Solar Energy Utilisation** Time: 1¹/₂ Hours Maximum Marks: 50

Time: 1¹/₂ Hours Maximum Marks: 50 Answer All Questions

SET - A

V I 1	V TAKTA – Answer An Questions (5 × 2 – 10 Marks)				
Q.No	Question	Simple Answer	Marks		
1	Why is doping needed in solar cells?	Doping adds impurities to silicon to create p-type and n-type regions for better conductivity.	2		
2	What is fill factor?	It shows solar cell efficiency.	2		
3		Allows developed nations to invest in clean energy projects in developing countries.	2		
4	What is payback period?	Time taken to recover the cost of a solar system through savings.	2		
5	Sensible vs Latent heat storage?	Sensible: Heat by temperature rise. Latent: Heat by phase change (e.g., ice to water).	2		

\checkmark PART A – Answer All Questions (5 × 2 = 10 Marks)

⊘ PART B – (2 × 13 = 26 Marks) & (1 × 14 = 14 Marks)

Q6. (a) What is solar cell? Explain the working with sketch. (13 Marks)

Part	Description	Marks
Definition	Converts sunlight to electricity using photovoltaic effect	2
Working principle	Light $ ightarrow$ e-h pair $ ightarrow$ movement in p-n junction $ ightarrow$ electric current	4
Energy conversion	Shows light energy to electrical energy conversion	2
Neat sketch	Proper diagram showing solar cell structure	3
Presentation & structure	Clear explanation and flow	2

Q6. (b) Describe manufacturing process of solar cells. (13 Marks)

Step	Description	Marks
Silicon purification	Extraction and cleaning of raw silicon	2
Wafer formation	Ingot making and slicing into wafers	3
Doping	Adding impurities to create p-n junction	2
Coating & contacts	Anti-reflective layer and metal contacts	2
Final assembly	Panel encapsulation and testing	2
Sketch	Neatly labeled diagram	2

Q7. (a) Write about solar vehicle & green environment. (13 Marks)

Part	Description	Marks
Introduction	What is a solar vehicle and components	3
Working principle	Solar panel \rightarrow Battery \rightarrow Motor \rightarrow Wheels	3
Green benefits	Zero pollution, renewable energy use	3
Real-time examples	Example like Lightyear One, solar rickshaws	2
Future importance	Role in clean transportation	2

Q7. (b) Working of BIPV & its future need. (13 Marks)

Part	Description	Marks
What is BIPV	Solar PV integrated into building parts	
How it works	How it works Captures sunlight and produces electricity	
Diagram	Proper sketch with labeling	3
Benefits	Space-saving, aesthetics, green building	2
Future value	Smart cities, net-zero buildings	2

Q8. (a) PV Cell construction, working & application. (14 Marks)

Part	Description	Marks
Construction	Layers: glass, coating, p-n junction, contact	3
Working	Sunlight \rightarrow e-h pair \rightarrow electricity generation	4
Real-time applications	Rooftop systems, solar lamps, water pumps	3
Sketch	Labeled diagram showing PV cell	2
Presentation	Structured and clear explanation	2

Q8. (b) Thermal storage – Sensible & Latent Heat. (14 Marks)

Part	Description	Marks
Why storage is needed	Solar is intermittent; storage ensures availability	2
What is thermal storage	Stores heat for later use	2
Sensible heat storage	Uses materials like water/stones; stores heat by temp change	3
Latent heat storage	Uses phase change materials; stores heat during melting/freezing	3
Comparison	Point-wise or tabular comparison	2
Real-life applications	Solar heaters, power plants	2

19MEO302 – **Solar Energy Utilisation** Time: 1¹/₂ Hours Maximum Marks: 50

Answer All Questions

SET – B

Q.No	Question	Simple Answer	Marks
1	Factors contributing to solar cell efficiency?	Material quality, light absorption, temperature, reflection losses, and surface area.	2
2	PV vs. other solar technologies?	PV: Converts light to electricity. Others: Use heat (e.g., solar thermal for heating/water).	2
3	Why is energy storage needed?	To store excess energy from sunlight for use during night or cloudy periods.	2
4	What is thermal energy storage?	Method to store solar heat using materials like water, salt, or phase change materials.	2
5	Define payback period.	Time required to recover solar system investment via energy savings.	2

\checkmark PART A – Answer All Ouestions (5 × 2 = 10 Marks)

⊘ PART B – (2 × 13 = 26 Marks) & (1 × 14 = 14 Marks)

Q6. (a) Need and working of PV cells + case study (13 Marks)

Part	Description	Marks
Need for PV cells	Clean, renewable, reduces carbon footprint	3
Working principle	Photovoltaic effect – sunlight \rightarrow e-h pairs \rightarrow current	3
Diagram	Neat sketch of PV cell	3
Case study	Simple example: Tata Solar rooftop, BIPV in airports	2
Presentation	Well-structured flow and clarity	2

Q6. (b) Manufacturing process of solar cells (13 Marks)

Step	Description	Marks
Silicon purification	Raw silicon → pure form	2
Wafer preparation	Ingot slicing into thin wafers	3
Doping	Adding impurities for p-n junction	2
Coating & contacts	Anti-reflective coating, metal lines	2
Assembly & testing	Encapsulation, quality control	2
Diagram	Sketch with labeling	2

Q7. (a) Necessity of thermal storage (13 Marks)

Part	Description	Marks
Need for thermal storage	Ensures availability when sunlight is not present	2
Sensible heat storage	Temperature rise (e.g., water, stones)	3
Latent heat storage	Phase change (e.g., paraffin, salt hydrate)	3
Examples	Solar water heater, CSP plants	3
Structure & clarity	Logical explanation	2

Q7. (b) Solar vehicle and green environment (13 Marks)

Part	Description	Marks
Definition of solar vehicle	Uses solar energy for motion	2
Working	Solar panel \rightarrow battery \rightarrow motor	3
Environmental benefits	Low pollution, renewable energy	3
Real-world examples	Lightyear One, Mahindra e-rickshaws	3
Presentation	Coherent structure	2

Q8. (a) PV cell construction, working & real-time use (14 Marks)

Part	Description	Marks
Construction	Layers: glass, coating, p-n junction, contacts	3
Working principle	Sunlight \rightarrow electron-hole \rightarrow current	3
Neat sketch	Clearly labeled	3
Real-time application	Rooftops, traffic lights, lamps	3
Presentation	Organized explanation	2

Q8. (b) Solar Vehicle + BIPV for green environment (14 Marks)

Part	Description	Marks
Solar vehicle	Concept, working, benefits	4
BIPV – what & how	Solar integrated into buildings (walls, roofs)	3
Importance for green future	Reduces fossil fuel use, space-saving	3
Real examples	Tesla Solar Roofs, Indian airport BIPV	2
Structure & neatness	Logical structure and clarity	2