19MEB303- FINITE ELEMENT ANALYSIS

IAE 3 FEA- Answer Key

SET A

PART A - Short Answers

1. Finite element equation for 1D heat conduction with free end convection:

$$[K]\{T\} = \{F\}$$

where

$$K = egin{array}{ccc} ^L kArac{dN^T}{dx}rac{dN}{dx}dx + egin{array}{ccc} ^L hPN^TNdx & F = egin{array}{ccc} ^L hPN^TT_{\infty}dx \end{array}$$

- 2. Conduction, convection, and thermal load matrices for 1D heat transfer through a fin:
 - Conduction:

$$[K_c] = \int\limits_0^L kArac{dN^T}{dx}rac{dN}{dx}dx$$

Convection:

$$[K_h] = \bigcup^L hPN^TNdx$$

Thermal load:

$$\{F\} = \int\limits_0^L hPN^TT_{\infty}dx$$

3. Heat loss from the pipe:

Given:

- $\bullet \quad {\rm Diameter} \ D = 0.1 \ {\rm m}$
- $\bullet \quad T_s = 250^{\circ}C, T_{\infty} = 20^{\circ}C$
- h = 20 \, \text{W/m}^2^\circ C

$$Q = hA(T_s - T_\infty) = 20 \cdot \pi \cdot 0.1 \cdot (250 - 20) = 1445.13 \, \mathrm{W/m}$$

- 4. Difference between element types:
 - Subparametric: Geometry shape functions < displacement shape functions
 - · Isoparametric: Geometry and displacement shape functions are same
 - Superparametric: Geometry shape functions > displacement shape functions
- 5. Gaussian quadrature expression:

$$\int\limits_{-1}^{1}f(x)dxpprox \int\limits_{i=1}^{n}w_{i}f(x_{i})$$

where x_i are Gauss points and w_i are weights

Part B

☐ Q6 (a) – Composite Wall Temperature Distribution

Steps:

- 1. Convert thickness to meters.
- 2. Calculate thermal resistances for each layer and convection.
- 3. Compute total thermal resistance.
- 4. Find heat transfer rate:

$$q = \frac{T_{\rm inside} - T_{\infty}}{R_{\rm total}}$$

5. Calculate interface temperatures using $T = T_1 - q \cdot R$

Final Answers:

- $q = 60.15 \, \text{W/m}^2$
- $T_2 = 189.85^{\circ}C$, $T_3 = 39.47^{\circ}C$, $T_4 = 30.77$

☐ Q6 (b) - Fin Temperature Distribution

Steps:

- 1. Compute cross-sectional area and perimeter.
- **2.** Calculate $m=\sqrt{rac{hP}{kA}}$
- 3. Use the 1D fin formula with insulated sides:

$$T(x) = T_{\infty} + (T_b - T_{\infty}) \cdot \frac{\cosh(m(L - x))}{\cosh(mL)}$$

Final Expression:

$$T(x) = 30 + 300 \cdot \frac{\cosh(0.1266(120 - x))}{\cosh(15.19)}$$

de

☐ Q7 (a) – Strain-Displacement Matrix for 4-Node Quad

Steps:

- 1. Write shape functions N_1 to N_4 .
- **2.** Use chain rule with Jacobian to convert $rac{\partial N}{\partial \xi}, \eta o x, y$
- 3. Form B-matrix with partial derivatives:

$$B = egin{bmatrix} rac{\partial N_i}{\partial x} & 0 \ 0 & rac{\partial N_i}{\partial y} \ rac{\partial N_i}{\partial y} & rac{\partial N_i}{\partial x} \end{bmatrix}$$

Final Answer:

Strain-displacement matrix $\left[B\right]$ at Gauss point using Jacobian.

☐ Q7 (b) (i) – Gauss Integration of Polynomial

Steps:

- 1. Use 2-point Gauss quadrature with points $\pm 1/\sqrt{3}$ and weights = 1.
- 2. Evaluate the function at both points.

Final Answer:

Exact value and Gauss approximation = 4

☐ Q7 (b) (ii) - 3-Point Gaussian Quadrature

Steps:

1. Use standard 3-point rule:

• Points: $\pm\sqrt{3/5},0$

• Weights: $\frac{5}{9}$, $\frac{8}{9}$, $\frac{5}{9}$

2. Evaluate function at each point and apply weights.

Final Answer:

Numerical value based on specific function.

☐ Q8 (a) - 1D Finite Element with Convection

Steps:

1. Write element stiffness matrix including conduction and convection:

$$K_e = -(kA \frac{dN^T}{dx} \frac{dN}{dx} + hPN^TN)dx$$

2. Form load vector from convection.

Final Answer:

Stiffness matrix and load vector with k,A,h,P,L,T_{∞}

☐ Q8 (b) - Composite Wall 2

Steps:

- 1. Same as Q6(a) with different dimensions and conductivities.
- 2. Calculate resistances, total resistance, heat transfer, and interface temperatures.

Final Answer:

- Heat loss: $q \approx 59.18\,W$
- · Interface temperatures:
 - $T_2 \approx 162.01^{\circ}C$
 - $T_3 \approx 42.02^{\circ}C$
 - $T_4 \approx 33.79^{\circ}C$