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Code Generation
Issues In the Design of Code Generator
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Code Generation

» Final phase of Compiler Design

» Optimized intermediate code is provided as input
> It generates target code

» Output code must be correct

» Output code must be high quality

» Code generator should run efficiently
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Prerequisites

¢ Instruction set of target machine.
¢ Instruction addressing modes.
* No. of registers.

* Configuration of ALU
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* Input to the code generator

* Memory management

* Target programs

¢ Instruction selection

* Register allocation

* Evaluation order

* Approaches to code generation
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Input to the code Generator

* The intermediate representation of the source program
produced by the front end

» Several choices for the intermediate language

postfix nottion

e Linear
* 3 address - quadruples
e Virtual machie - stack machine code

* Graphical syntax tree &dags
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Memory Management

* Mapping names in the source program to addresses of data
objects in run-time memory

* Done by the front end and the code generator.

* A name in a three- address statement refers to a symbol-
table entry for the name.

* A relative address can be determined
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Target program:

 The output of the code generator Is the target program. The
output may be : a. Absolute machine language

- It can be placed in a fixed memory location and can be
executed immediately. b. Relocatable machine language

- It allows subprograms to be compiled separately.
c. Assembly language
- Code generation is made easier.
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Instruction Selection

The factors to be considered during instruction selection are:

* The uniformity and completeness of the instruction set.
* Instruction speed and machine idioms.

e Size of the instruction set.
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Instruction Selection

Eg., for the following address code is:

a=b+c
d:=a+e

inefficient assembly code is:
MOV b, R, R, < b
ADD c, R, Roge—c+R,
MOV R, a a «—R,
MOV a, R, Ry, «— a
ADD e, R, Ro<—e+R,

MOV R, , d d —R,

Here the fourth statement is redundant, and so i1s the third
statement if ,

'a’ is not subsequently used.
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Register Allocation

« Instructions with register operands are usually shorter and
faster

« Efficient utilization of registers is important in
generating good code.

Register allocation phase:
» Select the set of variables that will reside in registers
Register assignment phase:

= Pick the specific register that a variable will reside in.
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Evaluation order

 The order in which the computations are performed can
affect the efficiency of the target code.

Some computation orders require fewer registers to hold
Intermediate results than others.
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Summarization



