i@ SNSCOLLEGE OF TECHNOLOGY
COIMBATORE 3

Code Generation
Issues In the Design of Code Generator

e 0y

Code Generation

» Final phase of Compiler Design

» Optimized intermediate code is provided as input
> It generates target code

» Output code must be correct

» Output code must be high quality

» Code generator should run efficiently

-~

Code Generation "D ¢ o

WWW.ARIgroups.com

Prerequisites

¢ Instruction set of target machine.
¢ Instruction addressing modes.
* No. of registers.

* Configuration of ALU

G Issues in the Design of Code
Generator

=]
'.:") ¢

¢
o
J
pd
S
L

>0

P
P T
L

* Input to the code generator

* Memory management

* Target programs

¢ Instruction selection

* Register allocation

* Evaluation order

* Approaches to code generation

@ Issues in the Design of Code
. Generator

Input to the code Generator

* The intermediate representation of the source program
produced by the front end

» Several choices for the intermediate language

postfix nottion

e Linear
* 3 address - quadruples
e Virtual machie - stack machine code

* Graphical syntax tree &dags

G Issues in the Design of Code

-
5 5T T IO
rd™

- Generator

)
ce

1
P
\

¢
S
_\'.‘
r'd
1

Memory Management

* Mapping names in the source program to addresses of data
objects in run-time memory

* Done by the front end and the code generator.

* A name in a three- address statement refers to a symbol-
table entry for the name.

* A relative address can be determined

ey

- -

Issues In the Design of Code > =
Generator

Target program:

 The output of the code generator Is the target program. The
output may be : a. Absolute machine language

- It can be placed in a fixed memory location and can be
executed immediately. b. Relocatable machine language

- It allows subprograms to be compiled separately.
c. Assembly language
- Code generation is made easier.

Issues In the Design of Code
Generator s

Instruction Selection

The factors to be considered during instruction selection are:

* The uniformity and completeness of the instruction set.
* Instruction speed and machine idioms.

e Size of the instruction set.

Issues in the Design of Code =

=
T TIONS

Generator

Instruction Selection

Eg., for the following address code is:

a=b+c
d:=a+e

inefficient assembly code is:
MOV b, R, R, < b
ADD c, R, Roge—c+R,
MOV R, a a «—R,
MOV a, R, Ry, «— a
ADD e, R, Ro<—e+R,

MOV R, , d d —R,

Here the fourth statement is redundant, and so i1s the third
statement if ,

'a’ is not subsequently used.

Issues in the Design of Code o

Generator

Register Allocation

« Instructions with register operands are usually shorter and
faster

« Efficient utilization of registers is important in
generating good code.

Register allocation phase:
» Select the set of variables that will reside in registers
Register assignment phase:

= Pick the specific register that a variable will reside in.

P
°ro

i

Issues in the Design of Code
Generator

Evaluation order

 The order in which the computations are performed can
affect the efficiency of the target code.

Some computation orders require fewer registers to hold
Intermediate results than others.

O

-

O -
B)

FITI o=
WWW.ARIgroups.com

Summarization

