BASIC COMMANDS

1.Tcpdump

Tcpdump is a command line utility that allows you to capture and analyze network traffic going through your system.

Procedure

Check if tcpdump is installed on your system

\$ which tcpdump

```
/usr/sbin/tcpdump
If tcpdump is not installed,
$ sudo apt install tcpdump
To get Supervisor Privilege
$ su
(and password 123456)
$ sudo –i to change #
($ is changed to # and the commands can be executed in supervisor)
```

Capturing packets with tcpdump

```
Use the command tcpdump -D to see which interfaces are available for capture.
```

[root@localhost cse]# tcpdump -D

```
1.nflog (Linux netfilter log (NFLOG) interface)
2.nfqueue (Linux netfilter queue (NFQUEUE) interface)
3.usbmon1 (USB bus number 1)
4.enp2s0
5.usbmon2 (USB bus number 2)
6.any (Pseudo-device that captures on all interfaces)
7.lo [Loopback]
Capture all packets in any interface by running this command:
```

[root@localhost cse]# tcpdump -i any

```
06:03:58.258143 ARP, Request who-has 172.16.51.87 tell 172.16.22.25, length 46 06:03:58.258225 ARP, Request who-has 172.16.51.88 tell 172.16.22.25, length 46 06:03:58.260828 ARP, Request who-has 172.16.51.122 tell 172.16.22.25, length 46
```

06:03:58.260903 ARP, Request who-has 172.16.51.123 tell 172.16.22.25, length 46 ^C 5244 packets capture

59636 packets received by filter

54378 packets dropped by kernel

(Press ctrl+C to stop execution)

Filter packets based on the source or destination IP Address

[root@localhost cse]#tcpdump -i any -c5 -nn src 172.16.20.138

6:10:30.712414 ARP, Request who-has 172.16.16.16 tell 172.16.20.138, length 28 06:10:31.483765 IP 172.16.20.138.47997 > 51.158.186.98.123: NTPv4, Client, length 48 5 packets captured

5 packets received by filter

0 packets dropped by kernel

[root@localhost cse]#tcpdump -i any -c5 -nn dst 172.16.20.139

6:10:30.712414 ARP, Request who-has 172.16.16.16 tell 172.16.20.138, length 28 06:10:31.483765 IP 172.16.20.138.47997 > 51.158.186.98.123: NTPv4, Client, length 48 5 packets captured

5 packets received by filter

0 packets dropped by kernel

Filtering packets

To filter packets based on protocol, specifying the protocol in the command line. For example, capture ICMP packets only by using this command:

[root@localhost cse]# tcpdump -i any -c5 icmp

(tcpdump captures and displays only the ICMP-related packets.)

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on any, link-type LINUX SLL (Linux cooked), capture size 262144 bytes

06:15:07.800786 IP localhost.localdomain > ec2-54-204-39-132.compute-

1.amazonaws.com: ICMP echo request, id 8180, seq 13, length 64

06:15:08.063488 IP ec2-54-204-39-132.compute-1.amazonaws.com >

localhost.localdomain: ICMP echo reply, id 8180, seq 13, length 64

5 packets captured

5 packets received by filter

0 packets dropped by kernel

In a different terminal, try to ping another machine:

\$ ping opensource.com

2. netstat

netstat (network statistics) is a command line tool for monitoring network connections both incoming and outgoing as well as viewing routing tables, interface statistics etc.

[root@localhost cse]# netstat

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 localhost.localdo:53318 ec2-52-206-98-166:https ESTABLISHED

tcp 0 0 localhost.localdo:36418 sg2plpkivs-v03.any:http TIME WAIT

 $-at \rightarrow list all TCP ports$

 $-au \rightarrow list all UDP ports$

 $-1 \rightarrow$ listening ports

 $-lt \rightarrow listening TCP$

 $-lu \rightarrow listening UDP$

 $-s \rightarrow$ statistics of all ports

-su →statistics of UDP

 $-st \rightarrow statistics of TCP$

3. ifconfig

It displays the details of a network interface card like IP address, MAC Address, and the status of a network interface card

[cse@localhost ~]\$ ifconfig

enp2s0: flags=4163 mtu 1500

inet 172.16.20.138 netmask 255.255.0.0 broadcast 172.16.255.255

inet6 fe80::d884:13bc:fd22:2d43 prefixlen 64 scopeid 0x20

ether a0:8c:fd:e7:10:86 txqueuelen 1000 (Ethernet)

RX packets 4474083 bytes 280780119 (267.7 MiB)

RX errors 0 dropped 353 overruns 0 frame 0

TX packets 14455 bytes 1798944 (1.7 MiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73 mtu 65536

inet 127.0.0.1 netmask 255.0.0.0

inet6::1 prefixlen 128 scopeid 0x10

loop txqueuelen 1000 (Local Loopback)

RX packets 4154 bytes 352264 (344.0 KiB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 4154 bytes 352264 (344.0 KiB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

4. nslookup

nslookup (stands for "Name Server Lookup") is a useful command for getting information from DNS server. It is a network administration tool for querying the Domain Name System (DNS) to obtain domain name or IP address mapping or any other specific DNS record.

[cse@localhost ~]\$ nslookup annauniv.edu

Server: 8.8.8.8

Address: 8.8.8.8#53

Non-authoritative answer:

Name: annauniv.edu Address: 103.70.60.38

[cse@localhost ~]\$ nslookup 172.217.26.206

Server: 8.8.8.8

Address: 8.8.8.8#53

Non-authoritative answer:

206.26.217.172.in-addr.arpa name = maa03s23-in-f14.1e100.net.

206.26.217.172.in-addr.arpa name = maa03s23-in-f14.1e100.net.

206.26.217.172.in-addr.arpa name = maa03s23-in-f206.1e100.net.

206.26.217.172.in-addr.arpa name = maa03s23-in-f206.1e100.net.

Authoritative traceroute answers can be found from:

Lookup for any record

[cse@localhost ~]\$ nslookup -type=any annauniv.edu

Server: 8.8.8.8

Address: 8.8.8.8#53

Non-authoritative answer:

Name: annauniv.edu Address: 103.70.60.38

annauniv.edu text = "v=spf1 ip4:103.70.60.40 -all"

annauniv.edu mail exchanger = 0 sonic.annauniv.edu.

annauniv.edu

origin = ns.annauniv.edu

```
mail addr = root.annauniv.edu
serial = 20170907
refresh = 300
retry = 900
expire = 604800
minimum = 86400
annauniv.edu nameserver = ns.annauniv.edu
. Authoritative answers can be found from:
Lookup for an ns record
[cse@localhost ~]$ nslookup -type=ns annauniv.edu
Server: 8.8.8.8
Address: 8.8.8.8#53
Non-authoritative answer:
annauniv.edu nameserver = ns.annauniv.edu.
Authoritative answers can be found from
5. traceroute
The traceroute command is used in Linux to map the journey that a packet of information
undertakes from its source to its destination.
[cse@localhost ~]$ traceroute
Usage: traceroute [-46dFITnreAUDV][-f first ttl][-g gate,...][-i device][-m max ttl
[-N squeries][-p port][-t tos][-l flow label][-w waittime][-q nqueries][-s
src addr ] [ -z sendwait ] [ -- fwmark=num ] host [ packetlen ]
Options:
-4 Use IPv4
-6 Use IPv6
-d --debug Enable socket level debugging
-F --dont-fragment Do not fragment packets
[cse@localhost ~]$ traceroute annauniv.edu
traceroute to annauniv.edu (103.70.60.38), 30 hops max, 60 byte packets
```

1 117.193.124.33 (117.193.124.33) 1.389 ms 1.216 ms 1.072 ms

2 172.16.199.74 (172.16.199.74) 1.902 ms 1.834 ms 1.761 ms

3 218.248.235.161 (218.248.235.161) 27.212 ms * *

5 218.248.178.42 (218.248.178.42) 15.521 ms * *

4 * * *

7 madurai-eg-175.232.249.45.powergrid.in (45.249.232.175) 16.007 ms 15.345 ms 15.867 ms

[cse@localhost ~]\$ traceroute 172.16.20.139

traceroute to 172.16.20.139 (172.16.20.139), 30 hops max, 60 byte packets

1 localhost.localdomain (172.16.20.138) 3004.348 ms !H 3004.215 ms !H 3004.104 ms !H

Capture ping and traceroute PDUs using a network protocol analyzer and examine

Network protocol analyzer – wireshark

Wireshark is free & Open source network packet analyzer that is used for network analysis, troubleshooting, etc.

Wireshark is quite similar to tcpdump, the major difference between the two is that Wireshark has a graphical interface with built-in filtering options, which make it easy to use.

Installation commands on Wireshark

sudo apt install wireshark

To Open Wireshark

Open directly or use the following commands

sudo wireshark

In wireshark filter icmp packets

In a konsole execute

ping www.sudo.com

traceroute www.google.com