

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

THE PRINCIPLE OF INCLUSION - EXCLUSION: n(AUB) = n(A) + n(B) - n(ANB)(01) |AUB| = |A1+1B1-1ANB| AUBUCI = |AI+ |BI+101 - |A nB|- |Anc|- |Bnc| + [AnBnc] [AUBUCUD] = [A]+1B]+ [C]+1D] - [ANB] - [ANB] - [AND] -|Bnc|-|Bnp|-|Cnp1+|AnBnc|+ IADBOD + |BOCOD + |AOCOD -[ANBNC ND] D Sn a survey of 100 students, it was found that so studied mathematice, 54 studied statistics, or studied operation Research, I studied all The three subjects. 20 studied mathematics and statistics, 3 studied mathematics and operations research and is studied statistics and (i) How many students studied none of these subjects? Operations Research (ii) How many Students Studied only mathematics ? Let A denote the students is ho studied mathematics Let B denote The students who studied statistics soln! Let a denote the objections who studied OR. Then 1A1= 30; 1B1=54; 101=25 |ANB|= 20; |Anc|= 3; |Bnc|=15-IANBNC]=1 1 x

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

(i) No. 2 students studied none 2 these subject =100 - [AUBUC] . By peinciple of Inclusion - Enclusion, AUBUCI = IA 1+1BI+1CI - IANB1-1ANCI- IBNC+ IANBNC = 30+ 54+25- 20- 8-15+ 1 = 72 . NO. 2 students studied none 9 these] = 100-72 subjects J = 28 (11) No. 9 studente studente only] = n(ANB)-n(ANBNC) Matha & statuitica J = n(ANB)-n(ANBNC) = 20-1 =19 No. 9 students studied only? = n(Anc)-n(ANBAC) Matter & OR Then, No. 9 students studied? = 30-19-2 only mathematics J = 9 (2) How many positive integers not enceeding 1000 are dinsible by 7 an 11? Let A denote The set of +ve integers not enceeding 1000 that are divisible by 7. Let B denote the set of the integers not exceeding 1000 that are densible by 11. Then |A| = [1000] = [142.8] = 142. 1B1 = [1000] = [90.9] = 90

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

IANB = [1000] = [12,9] =12.

. NO.9 + Ve integer not enceeding 1000 that are denitible by either 7 of 11 is IAUB) By principle of melution - Enclusion, IAUBI = IAI+IBI-IANBI = 142+90-12 = 220.

3) Find the no. 9 integers between 1 to 250 that are not divisible by any of the integers 2,3,5 &7.

dinsible by	lincti The int		1 k in th	hat one	divisible	642
Stin: Let A c	lincte the inc	egu prom	TIC KSD P	6.77.2, 975, 775, 975, 98		3
LAN B	11 . y	n	11			5
Let C	P.		11		105 74207	Ħ
μι -	11	11	11		"	7
Let D Inl=	$\begin{bmatrix} \frac{\partial}{\partial s} \\ \frac{\partial}{\partial s} \end{bmatrix} = 12$	F ().	n tinu			
B =	$\left\lfloor \frac{\partial r_0}{3} \right\rfloor = 8$	3			.*	
c =	$\left[\frac{\partial\Omega}{5}\right] =$	50			c ^a l	
D =	$\left[\frac{a_{SD}}{7}\right] = 3$	5				
Now, the no that au	.9 Integer e divitble	btwn 1.10 Jry 28	2502 = 1F 3 J	$ nB = \begin{bmatrix} \frac{1}{2} \\ 0 \end{bmatrix}$	250	
the ne	: ? in loger 	dinkible k	y 285 = 1	= 20 A	[250 [2×5] 25	

(An Autonomous Institution)

Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & amp; Accredited by NBA (B.E - CSE, EEE, ECE, Mech & amp; B.Tech.IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF MATHEMATICS

Similarly,
$$|A \cap D| = \left[\frac{2SO}{2xT}\right] = 17$$

 $|B \cap D| = \left[\frac{2SO}{3xT}\right] = 16$
 $|B \cap D| = \left[\frac{2SO}{5xT}\right] = 11$
 $|C \cap D| = \left[\frac{2SO}{5xT}\right] = 7$
 $No. q. integres divisible by $2,345 = |A \cap B \cap C|$
 $= \left[\frac{2SO}{2x3xT}\right] = 5$
 $\beta \cap C \cap D| = \left[\frac{2SO}{2x5xT}\right] = 5$
 $|A \cap C \cap D| = \left[\frac{2SO}{2x5xT}\right] = 3$
 $|B \cap C \cap D| = \left[\frac{2SO}{2x5xT}\right] = 2$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = \left[\frac{2SO}{2x3x5T}\right] = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C \cap D| = 1$
 $A \cap B \cap C$$

Discrete Mathematics