
UNIT II
ARITHMETIC OPERATIONS

Addition and subtraction of signed numbers – Design of fast adders –

Multiplication of positive numbers - Signed operand multiplication- fast

multiplication – Integer division – Floating point numbers and operations

Computer Arithmetic’s

Arithmetic Instruction Manipulate data to produce results necessary for the
solution of computational problem

 Four Basic Arithmetic Operations are – Addition, Subtraction, Multiplication
and Division

An arithmetic processor is the part of a processor unit that executes
arithmetic operations

Arithmetic operations can be performed for following data types

• Fixed point binary data in signed magnitude representation
• Fixed point binary data in signed 2’s complement representation
• Floating Point binary data
• Binary coded decimal data

20-08-2024C.PARKAVI/AP-AIML

Addition and Subtraction

Example: Represent +9 and -9 in 7 bit-binary number

Only one way to represent + 9 ==> 0 001001

Three different ways to represent - 9:
In signed-magnitude: 1 001001
In signed-1's complement: 1 110110
In signed-2's complement: 1 110111

Representation of both positive and negative numbers

- Following 3 representations

Signed magnitude representation
Signed 1's complement representation
Signed 2's complement representation

20-08-2024C.PARKAVI/AP-AIML

Addition and Subtraction

20-08-2024

Operation Add Magnitudes Subtract Magnitudes

A>B A<B A=B

(+ A) + (+ B) + (A + B)

(+ A) + (- B) + (A - B) - (B - A) + (A - B)

(- A) + (+ B) - (A - B) + (B - A) + (A - B)

(- A) + (- B) - (A + B)

(+ A) - (+ B) + (A - B) - (B - A) + (A - B)

(+ A) - (- B) + (A + B)

(- A) - (+ B) - (A + B)

(- A) - (- B) - (A - B) + (B - A) + (A - B)

C.PARKAVI/AP-AIML

Addition (subtraction) Algorithm

– When the sign of A and B are identical (different) , add the magnitudes and

attach the sign of A to the result.

– When the signs of A and B are different (identical), compare the magnitudes

and subtract the smaller number from the larger.

 Choose the sign of result to be same as A if A>B

 or the complement of sign of A if A<B

 if A=B subtract B from A and make the sign of result positive

Computer Arithmetic’s

20-08-2024C.PARKAVI/AP-AIML

B Register

Complementer

Parallel Adder

A Register

Bs

E

AVF

As Load Sum

Input
Carry

M
(ModeControl)

Output
Carry

Simple procedure require magnitude comparator, an adder, two subtractor however alternative

reveals that using 2’s complement for operation requires only an adder and a complementor

M=0 output = A+B M=1 output = A+B’+1= A-B

Hardware Implementation

20-08-2024C.PARKAVI/AP-AIML

Flow Chart for Add
and Subtract

Operation

20-08-2024C.PARKAVI/AP-AIML

Addition :

– Addition of two numbers in signed 2’s complement form consists of
adding the numbers with the sign bits treated the same as the other
bits of the number. Carry out of sign bit is discarded

– Sum is obtained by adding the content of AC and BR (including the
sign bit). Overflow bit is set to 1 if EX-OR of last two carries if 1

Subtraction :

– Here Subtraction consists of first taking the 2’s complement of the
subtrahend and then adding it to minuend

– Subtraction done by adding the content of AC to 2’s Complement of BR.

Signed 2’s Complement Representation

20-08-2024C.PARKAVI/AP-AIML

Signed 2’s Complement Representation

20-08-2024C.PARKAVI/AP-AIML

20-08-2024C.PARKAVI/AP-AIML

20-08-2024

• Addition and subtraction is the basic operation to be performed by
computer

• Digitsareadded bit by bit fromright to left, with carries passed
to the next digit to the left.

C.PARKAVI/AP-AIML

Example

Adding 610 to 710 in binary

Solution

6 0110

7 0111

13 1101

20-08-2024

C.PARKAVI/AP-AIML

COMPUTER ADDITION

• Can be taken place in 32 bit formats

0000 0000 0000 0000 0000 0000 0000 01112 = 710

0000 0000 0000 0000 0000 0000 0000 01102 = 610

0000 0000 0000 0000 0000 0000 0000 11012 = 1310

7 A.Aruna / CS6303 /ADDITION7/10/201

20-08-2024C.PARKAVI/AP-AIML

20-08-2024

Overflow in Addition

Happened in addition and subtraction

•Cannot be represented in available hardware

•Example :

–First operand – 32 bit word

–Second operand – 32 bit word

–Result also must be 32 bit word

– If exceeds more than 32 bit word causes overflow

C.PARKAVI/AP-AIML

• Adding +ve and –ve operands, no overflow

• Adding two +ve operands

• Overflow if result sign is 1

• Adding two –ve operands

• Overflow if result sign is 0

• Example : -10 + 4 = -6.

• Since the operands fit in 32 bits and the sum is no larger than an operand, the
sum must fit in 32 bits as well.

• No overflow can occur when adding positive and negative operands.

• Adding or subtracting two 32-bit numbers can yield a result that needs 33 bit for
fully expressed

6/12

20-08-2024C.PARKAVI/AP-AIML

20-08-2024

• The lack of a 33rd bit means that when overflow occurs, the sign bit is set with

the value of the result instead of the proper sign of the result.

• Overflow occurs when adding a 2 positive numbers and the sum will be

negative and vice- versa (adding 2 positive and 2 negative numbers)

• Addition can be performed in two ways

– Unsigned binary Numbers

– Signed Binary Numbers

• Overflow bit indicated by flag bit

C.PARKAVI/AP-AIML

20-08-2024

• Positive number – unsigned

• Negative number – signed

• Ordinary,

– + sign indicative +ve

– – sign indicate –ve.

• In computer, everything are binary numbers,

– 0 represents positive number

– 1 represents Negative numbers

C.PARKAVI/AP-AIML

20-08-2024

Before processing user must identify , whether the number is signed or

unsigned

•Left most bit represent the sign bit

Example

01001 +9

11001 - 9

C.PARKAVI/AP-AIML

20-08-2024

Example

• Consider a two 4 bit positive number

• +9 and +8 = 01001 + 01000 = 10001

• Consider a two 8 bit positive number

• +98 and +87

01001 1000

01000 0111

10001 1111

C.PARKAVI/AP-AIML

20-08-2024

Example

• Consider a two 4 bit Negative number

• -9 and -6 = 11001 + 10110 = 101111

– 1’s complement - to avoid overflow

• Consider a two 8 bit positive number

• -83and -24

11000 0011

10010 0100

101010 0111

C.PARKAVI/AP-AIML

Assessment

20-08-2024

Carryout = (b.CarryIn)+(a.CarryIn) +(a.b)

Sum = (a.b’.CarryIn’)+ (a’.b.CarryIn’)+ (a’.b’.CarryIn)+ (a.b.CarryIn)

C.PARKAVI/AP-AIML

20-08-2024C.PARKAVI/AP-AIML

