

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution) Approved by AICTE, New Delhi, Affiliated to Anna University, Chennai Accredited by NAAC-UGC with 'A++' Grade (Cycle III) & Accredited by NBA (B.E - CSE, EEE, ECE, Mech & B.Tech. IT) COIMBATORE-641 035, TAMIL NADU

DEPARTMENT OF AEROSPACE ENGINEERING

Faculty Name	:	Dr.A.Arun Negemiya, AP/ Aero	Academic Year	:	2024-2025 (Odd)
Year & Branch	:	III AEROSPACE	Semester	:	V
Course	:	19AST301 - Space Propulsion			

UNIT I - FUNDAMENTALS OF ROCKET PROPULSION

Preliminary Performance Calculations

Figures of Merit	Units (SI)	Newtoni an Physics	EP Application ^[9]	Definition	
Thrust (F)	N	$F = \dot{m}_p v_e$	$F = \frac{\gamma \sqrt{\frac{2M}{e}} I_b \sqrt{V_b}}{1000}$	Total amount of force produced by a system or thruster.	
Specific Impulse (I _{sp})	sec	$I_{sp} = \frac{F}{g_0 \dot{m}}$	$I_{sp} = \frac{\gamma \eta_m}{g_0} \sqrt{\frac{2 e V_b}{M}}$	Measures propellant performance by quantifying the total impulse per unit mass of propellant.	
System Change in Velocity (Δv)	m/s	$\Delta v = g_0 I_{sp} \ln \left(\frac{m_i}{m_f} \right)$		Quantifies system ability to change its velocity based on propellant performance and spacecraft mass.	
Density Specific Impulse (I _d)	<u>kg-s</u> L		$I_d = \rho I_{sp}$	Used to compare propellant performance for given I _{sp} and density. This is generally how well the propellant packages.	
Total Impulse (I _t)	Ns	$I_t =$	$\int_{0}^{t_{b}} Fdt = Ft_{b}$	Change in momentum given by integrating thrust over a given burn time. Quantifies total amount of force produced by the propellant.	
Volumetric Impulse	$\frac{Ns}{L} \vee \frac{Ns}{U}$	$rac{I_t}{V_{S/C}}$		This efficiency parameter used for SmallSat propulsion systems describes the amount of total impulse (Ns) a system imparts to a body per unit volume (U or L).	
Propellant Mass Fraction [*]	None	$\zeta = \frac{m_p}{m_f}$		Quantifies the efficiency of a propulsion system to move a given mass (m_f) .	

Nomenclature:

- F Thrust, N
- I_{sp} Specific Impulse, s
- Δv Change in Velocity, m/s
- I_d Density Specific Impulse, (kg-s)/m³
- It Total Impulse, Ns
- V_{s/c} CubeSat Spacecraft Volume, U or L
- m_p Propellant mass, kg
- \dot{m}_p Propellant mass flow rate, kg/s
- IbIon beam current, AηmThruster mass utilization
efficiency

- ve Combustion exit velocity at the nozzle, m/s
- t_b Thruster burn time, s
- m_i Initial (wet) spacecraft mass, kg
- $\mathbf{m}_{\mathbf{f}}$ Final (dry) spacecraft mass, kg
- **ρ** Density, kg/m³
- \mathbf{g}_{0} Earth gravity acceleration, m/s²
- γ Total Thrust Correction Factor
- M Mass of planet, kg
- V_b Effective beam voltage, Vdc
- e Ion Charge, A