

SNS COLLEGE OF TECHNOLOGY

NSTITUTIONS

(An Autonomous Institution)

COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME: 19EEB301/ CONTROL SYSTEMS

III YEAR / V SEMESTER

Unit I – SYSTEMS AND THEIR REPRESENTATIONS

Topic : Analogous systems

Electrical Analogies of Mechanical Systems

- Two systems are said to be analogous to each other if the following two conditions are satisfied.
 - The two systems are physically different
 - Differential equation modelling of these two systems are same
- Electrical analogies of translational mechanical systems.
 - Force voltage analogy
 - Force current analogy
- Electrical analogies of rotational mechanical systems.
 - Torque voltage analogy
 - Torque current analogy

Force - Voltage Analogy

Translational Mechanical System	Electrical System
Force(F)	Voltage(V)
Mass(M)	Inductance(L)
Frictional Coefficient(B)	Resistance(R)
Spring Constant(K)	Reciprocal of Capacitance $\left(\frac{1}{c}\right)$
Displacement(x)	Charge(q)
Velocity(v)	Current(i)

Force - Current Analogy

Translational Mechanical System	Electrical System
Force(F)	Current(i)
Mass(M)	Capacitance(C)
Frictional coefficient(B)	Reciprocal of Resistance $(\frac{1}{R})$
Spring constant(K)	Reciprocal of Inductance $(\frac{1}{L})$
Displacement(x)	Magnetic Flux(ψ)
Velocity(v)	Voltage(V)

Torque - Voltage Analogy

Rotational Mechanical System	Electrical System
Torque(T)	Voltage(V)
Moment of Inertia(J)	Inductance(L)
Rotational friction coefficient(B)	Resistance(R)
Torsional spring constant(K)	Reciprocal of Capacitance $\left(\frac{1}{c}\right)$
Angular Displacement(θ)	Charge(q)
Angular Velocity(ω)	Current(i)

Torque – Current Analogy

Rotational Mechanical System	Electrical System
Torque(T)	Current(i)
Moment of inertia(J)	Capacitance(C)
Rotational friction coefficient(B)	Reciprocal of Resistance $(\frac{1}{R})$
Torsional spring constant(K)	Reciprocal of Inductance $(\frac{1}{L})$
Angular displacement(θ)	Magnetic flux(ψ)
Angular velocity(ω)	Voltage(V)

Thankyou