

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME: 19EEB301/ CONTROL SYSTEMS

III YEAR / V SEMESTER

Unit I – SYSTEMS AND THEIR REPRESENTATIONS

Topic : Block Diagram Reduction Rules

Block Diagram

- Block diagrams consist of a single block or combination of blocks.
- These are used to represent the control systems in pictorial form.
- Basic elements of a block diagram
 - Block
 - The summing point
 - The take-off point
 - Arrows indicate the direction of the flow of signals.

Block

- The transfer function of a component is represented by a block.
- Block has single input and single output.

The following figure shows a block having input X(s), output Y(s) and the transfer function G(s).

X(s)G(s)Y(s)G(s)
$$G(s) = \frac{Y(s)}{X(s)}$$
Transfer Function, $G(s) = \frac{Y(s)}{X(s)}$ $\Rightarrow Y(s) = G(s)X(s)$

Summing Point

- The summing point is represented with a circle having cross (X) inside it.
- It has two or more inputs and single output.
- It produces the algebraic sum of the inputs.
- The following figure shows the summing point with two inputs (A, B) and one output (Y).

Take-off Point

The take-off point is a point from which the same input signal can be passed through more than one branch.

Series Connection

also known as cascade connection

$$X(s) \longrightarrow G_1(s) \longrightarrow G_2(s) \longrightarrow Y(s)$$

• Two block in series can be replaced by a single block whose transfer function is the product of the transfer function of the two blocks in series.

$$X(s) \longrightarrow G_1(s)G_2(s) \longrightarrow Y(s)$$

• Two block in series can be replaced by a single block whose transfer function is the Sum of the transfer function of the two blocks in series.

$$X(s) \longrightarrow G_1(s)+G_2(s) \longrightarrow Y(s)$$

19EEB301/CS/C.Ramya/AP/EEE

Feedback Connection

- When output of the system is fed back to the input to stabilize and reduce error of the system is called as feedback.
- Feedback can be of positive or negative type.
- When the feedback loop is added with the input signal it is called as **positive feedback** and when the feedback is subtracted from the input signal it is called as **negative feedback**.

Shifting The Summing Point After The Block

• This involves the shift of the summation point after the block. But after the shift the output result should not change.

Shifting The Summing Point Before The Block

This involves the shift of the summation point before the block. But after the shift the output result should not change.

Shifting The Take-off Point After The Block

Shifting The Take-off Point Before The Block

Application - Block Diagram

- Block diagrams are used for for simplified representation of control systems.
- Signal processing systems are also represented through block diagram and block diagram algebra is used to analyze these systems.
- It is used for block diagram reduction which is used to find the transmittance of the overall system.

Thank You

19EEB301/CS/C.Ramya/AP/EEE