

SNS COLLEGE OF TECHNOLOGY

(An Autonomous Institution)

COIMBATORE-35

Accredited by NBA-AICTE and Accredited by NAAC – UGC with A++ Grade Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE NAME: 19EEB301/ CONTROL SYSTEMS

III YEAR / V SEMESTER

Unit I – SYSTEMS AND THEIR REPRESENTATIONS Topic : Signal flow Graphs

Signal Flow Graphs

- It is a graphical representation of the control systems.
- It consists of a network in which nodes represent system variables. These nodes are connected by direct branches.

TERMINOLOGIES

- Node: It is a system variable equal to the sum of all signals arriving at a node. Output signals do not affect the value of the node.
- **Branch:** A branch is a line that connects two nodes in the direction of the signal flow.
- **Transmittance:** Transmittance is gain between nodes, also known as branch gain.
- Input or source node: It is a node that has only outgoing branches.
- **Output or sink node:** It is a node that has only incoming branches.
- Chain or mixed node: It is a node having both incoming and outgoing nodes.

Signal Flow Graphs

- **Path:** It is the traversal from one node to another in the direction of the signal such that no node is traversed more than once.
- Forward Path: It is the path from the input node to the output node.
- **Closed loop:** It is the loop that starts from a particular node and ends at the same node.
- Self loop: It starts from one end and ends at the same node. It has only one branch.
- **Path gain:** It is the product of all branch gain in a path.
- Loop gain: It is the product of branch gain in a closed loop.

Steps to Draw Signal Flow Graph from Block Diagram

- Replace the input and output signal by nodes.
- Replace all the summing points by nodes.
- Replace all taking off points by nodes.
- If the branch connecting a summing point and take off point can be combined then it is represented by a single node.
- If there are more takeoff points from the same signal then all the take off points can be combined and represented by a single node.
- If the gain of the link connecting two summing points is one then the two summing points can be combined and replaced by a single node.

Steps to Draw Signal Flow Graph from Block Diagram

• Mason's gain formula is used to find the overall transmittance or gain of the system from signal flow graph.

$$T = \frac{\sum_{k=1}^{k} P_k \Delta_k}{\Delta}$$

Where,

Pk is the forward path gain of kth path from a specified input node to an output node

 Δk is the path factor associated with the concerned path and involves all closed loops in the graph which are isolated from the forward path under consideration.

 $\Delta = 1 - [\text{sum of all individual loop transmittance}] + [\text{sum of loop transmittance products of all possible pairs of non-touching loops}] - [\text{sum of loop transmittance products of all possible triplets of non-touching loops}] +$

Thank You

19EEB301/CS/C.Ramya/AP/EEE

7