UNIT 1_FINITE AUTOMATA AND REGULAR LANGUAGES

1. Central Concepts Of Automata Theory

- 2. If ∑= {0,1} find ∑3------
- 3. Given Σ ={a,b} obtain Σ *------
- 4. I'm collection of symbols------
- 5. I will repeat infinite number of times

2. Finite Automata

1. The minimum number of states required to recognize an octal number divisible by 3 are/is-----

2. Match the following

a. Q	-	Final State				
b. ∑	-	Transition Function				
ς. δ	-	Initial State				
d. q0	-	Set of states				
e. F	-	Set of Input Symbols				

- 3. Given the language $L = \{ab, aa, baa\}$, which of the following strings are in L*?
 - a. abaabaaabaa
 - b. aaaabaaaa
 - c. baaaaabaaaab
 - d. baaaaabaa

4. Consider the set of strings on $\{0,1\}$ in which, every substring of 3 symbols has at most two zeros. For example, 001110 and 011001 are in the language, but 100010 is not. All strings of length less than 3 are also in the language. A partially completed DFA that accepts this language is shown below.

The missing arcs in the DFA are

	00	01	10	11	q
00	1	0	4.5		
01				1	1
10	0				
11			0		
	00	01	10	11	q
00		0			1
01		1			
10				0	
11		0			
	00	01	10	11	q
00		1			0
01		1			
10			0		
11		0	2		

0	00	01	10	11	q
00		1			0
01				1	
10	0				
11			0		

5. Which one of the following languages over the alphabet $\{0,1\}$ is described by the regular expression: (0+1)*0(0+1)*0(0+1)*?

- a) The set of all strings containing the substring 00.
- b) The set of all strings containing at most two 0's.
- c) The set of all strings containing at least two 0's.
- d) The set of all strings that begin and end with either 0 or 1.

6. Which of the following is a not a part of 5-tuple finite automata

a. Input alphabet b. Transition function c. Initial State d. Output Alphabet

7. Without me Automata will not work

8. Deterministic Finite Automata

- 1. I am given to a machine____
- 2. The password to the admins account="administrator". The total number of states required to make a password-pass system using DFA would be
- 3. Let $\Sigma = \{a, b, ..., z\}$ and $A = \{\text{Hello, World}\}, B = \{\text{Input, Output}\}, \text{then } (A^* \cap B) \cup (B^* \cap A)$ can be represented as:

- 4. For a machine to surpass all the letters of alphabet excluding vowels, how many numbers of states in DFA would be required?
- 9. Non-Deterministic Finite Automata
 - 1. Narrate NFA relating to the below picture_____

10. _____Used as applications of automata

