

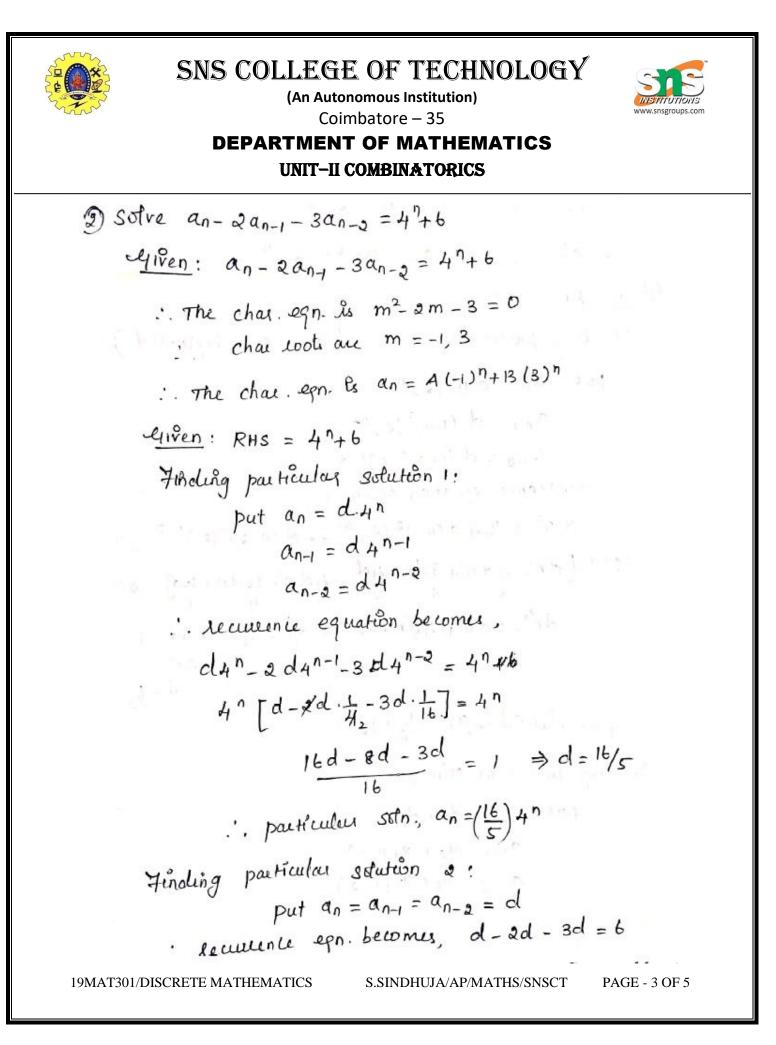
(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT-II COMBINATORICS

LINEAR NON-HONOGENEOUS RECURRENCE EQUATIONS :

O solve the recurrence equation S(K)-7S(K-1)+10S(K-2)=
8K+6, with the initial conditions
4iven S(K)-7S(K-1)+10S(K-2)=8K+6 with
S(0) = 1, $S(1) = 2$.
S(0) = 1, $S(1) = 2$. (u) $\alpha_n - 7\alpha_{n-1} + 10\alpha_{n-2} = 8n+6$ with $\alpha_0 = 1$, $\alpha_1 = 2$
.". The chae. egn is m2-7m+10=0
chae. eoots cae m=2,5
. The char egn is $a_n = A(2)^n + B(5)^n$
given: RHS = 8n+6
Finding particular solution :
put $a_n = d_0 + d_1 (n) $
$a_{n-1} = d_0 + d_1 (n-1)$
$a_{n-2} = d_0 + d_1 (n-2)$
: le cuilence equation becomes,
$d_{0+d,n-7}(d_{0+d,(n-1)})+10(d_{0+d,(n-2)}) = 8n+6$
do + d, n- 7do -7d, n + yd, + 10 do + 10d, n - 20 d, = 8n+ 6
4 do + 4 d, n - 13 d, = 8n + 6



(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT-II COMBINATORICS

By equating co-efficient of n & constants, we get $4d_1 = 8$; $4d_0 - 13d_1 = 6$ $d_1 = 2$; $4d_0 - 26 = 6$ do = 8 . particular soto. an = 8 + 2n : General Sotn is an = chey egn + particular sotn $a_n = A(2)^n + B(5)^n + 8 + 2n$ given: ap=1 $\Rightarrow \alpha_0 = A(a)^0 + B(5)^0 + 8 + a(0)$ 1 = A + B+8 -7 = A + B ___ (1) & also egiven: a1=2 $\Rightarrow a_1 = A(2)' + B(5) + B + 2(1)$ 2 = 2A+ 5B+ 10 -8 = 2 A + 5B - 2 By solving (& () we yet, A=-9; B=2 $\therefore \alpha_n = -9(2)^n + 2(5)^n + 8 + 2n$

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT-II COMBINATORICS

$\Rightarrow d = -3/2$
· · particular soln, an = -3/2.
· epeneral soln an = char. epn+ part. soln 1+ part. soln 1+
$= A(3)^{n_{+}}B(-1)^{n_{+}} + \frac{16}{5} + \frac{1}{2}$
3) Solve The recurrence equation $\alpha_n - 4 \alpha_{n+1} + 4 \alpha_{n-2} = 2^n + 3n$
$n \geq 2$.
$l_{11}v_{en}: a_{n-4}a_{n-1} + 4a_{n-2} = 2^{n} + 3^{n}$
.". The char. egn. is m2-4m+4=0
chae. loots are m = 2, 2
\therefore char. epn. is an = (A + Bn)(2) ⁿ
Miven: RHS = 2 7+3n
Finding particular solo 1: (loots are repeated)
put $a_n = dn^2(2)^n$
$\alpha_{n-1} = d(n-1)^2(2)^{n-1}$
$a_{n-2} = d(n-2)^2(2)^{n-2}$
.' recureence equation becomes,
$d n^{2}(2)^{n} + d(n-1)^{2}(2)^{n-1} + 4d(n-2)^{2}(2)^{n-2} = 2^{n}$

(An Autonomous Institution)

Coimbatore – 35

DEPARTMENT OF MATHEMATICS UNIT-II COMBINATORICS

$$(2)^{n} \left[dn^{2} - \frac{\mu}{2} dn^{2} + \frac{gdn}{2} - \frac{\mu}{2} d + \frac{\mu}{4} dn^{2} - \frac{16}{4} dn + \frac{16}{4} d \right] = 2n$$

$$dn^{2} - 2dn^{2} + 4dn - 2d + dn^{2} - \frac{\mu}{4} dn + \frac{\mu}{4} d = 1$$

$$2d = 1$$

$$2d = 1$$

$$2d = 1$$

$$d = \frac{1}{2}$$

$$d$$

eval solo. is
$$a_n = check \cdot eqn \cdot q = (A + Bn)(a)^n + (1/2)n^2(a)^n + 1a + 3n$$