

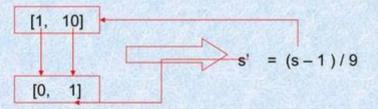
SIMILARITY MEASUREMENTS

PP27-28

Similarity Measures

- A similarity measure can represent the similarity between two documents, two queries, or one document and one query
- It is possible to rank the retrieved documents in the order of presumed importance
- A similarity measure is a function which computes the degree of similarity between a pair of text objects
- There are a large number of similarity measures proposed in the literature, because the best similarity measure doesn't exist (vet!)

Classic Similarity Measures


- All similarity measures should map to the range [-1,1] or [0,1],
- 0 or -1 shows minimum similarity. (incompatible similarity)
- 1 shows maximum similarity. (absolute similarity)

Conversion

For example

 1 shows incompatible similarity, 10 shows absolute similarity.

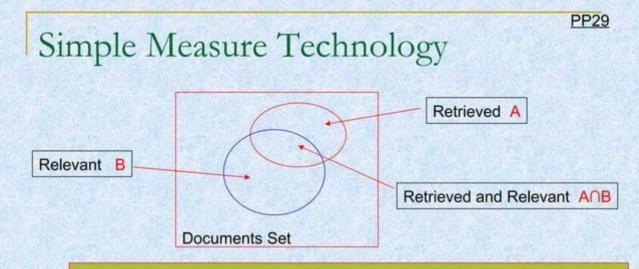
Linear Non-linear

Generally, we may use: s' = (s - min_s)/(max_s - min_s)

Vector-Space Model-VSM

 1960s Salton etc provided VSM, which has been successfully applied on SMART (a text searching system).

(System for the Mechanical Analysis and Retrieval of Text)

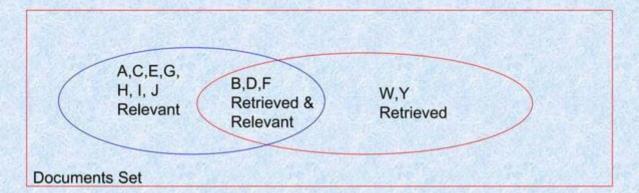


Example

D is a set, which contains m Web documents;
 D={d₁, d₂,...d_i...d_m} i=1,2...m

 There are n words among m Web documents. di={w_{i1},w_{i2},... w_{ij},...w_{in}} i=1,2...m , j=1,2,...n

Q= {q₁,q₂, If sin ilerity(q,t_i)}>i=1,2, f(q,t_i), We may get the result d_i is more relevant than d_i


Precision = Returned Relevant Documents / Total Returned Documents

 $P(A,B) = |A \cap B| / |A|$

Recall = Returned Relevant Documents / Total Relevant Documents

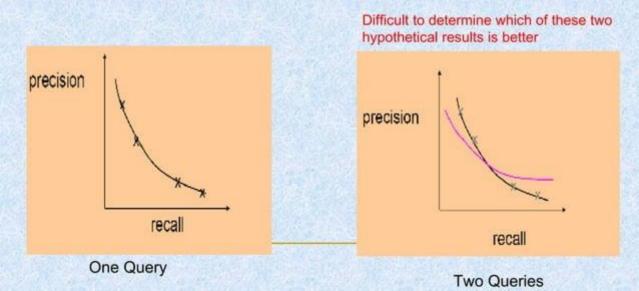
 $R(A,B) = |A \cap B| / |B|$

Example--Simple Measure Technology


```
|A| = \{retrieved\} = \{B, D, F, W, Y\} = 5
```

```
|B| = \{relevant\} = \{A, B, C, D, E, F, G, H, I, J\} = 10
```

 $|A \cap B| = \{\text{relevant}\} \cap \{\text{retrieved}\} = \{B, D, F\} = 3$

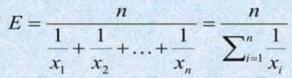

P = precision = 3/5 = 60%

R = recall = 3/10 = 30%

Precision-Recall Graph-Curves

There is a tradeoff between Precision and Recall
 So measure Precision at different levels of Recall

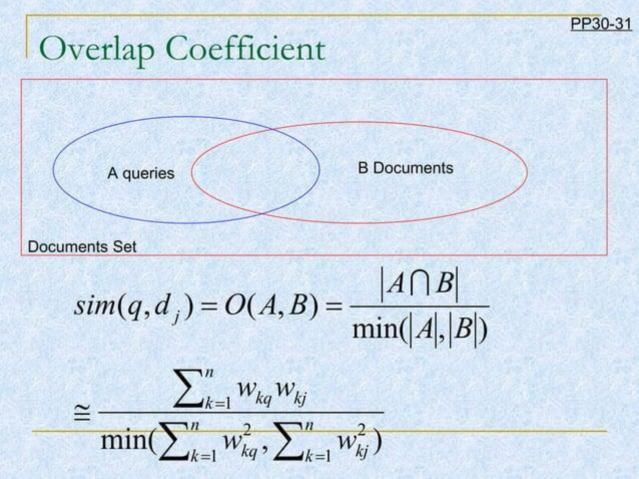
PP30

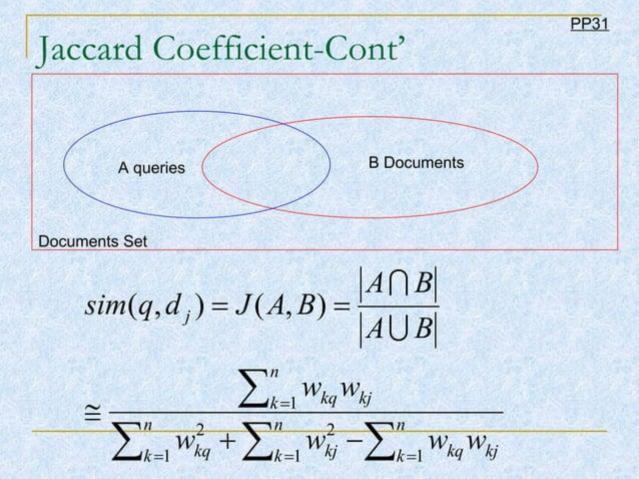

Similarity measures based on VSM

- Dice coefficient
- Overlap Coefficient
- Jaccard
- Cosine
- Asymmetric
- Dissimilarity
- Other measures

Dice Coefficient-Cont'

- Definition of Harmonic Mean:
- To X₁,X₂, ..., X_n, their harmonic mean E equals n divided by(1/x₁+1/x₂+...+1/X_n), that is


 To Harmonic Mean (E) of Precision (P) and Recall (R)


$$E = \frac{2}{\frac{1}{P} + \frac{1}{R}} = \frac{2}{\frac{|A \cap B|}{|A|} + \frac{|A \cap B|}{|B|}} = \frac{2 \times |A \cap B|}{|A| + |B|}$$

Dice Coefficient-Cont'

Denotation of Dice Coefficient:

Example- Jaccard Coefficient

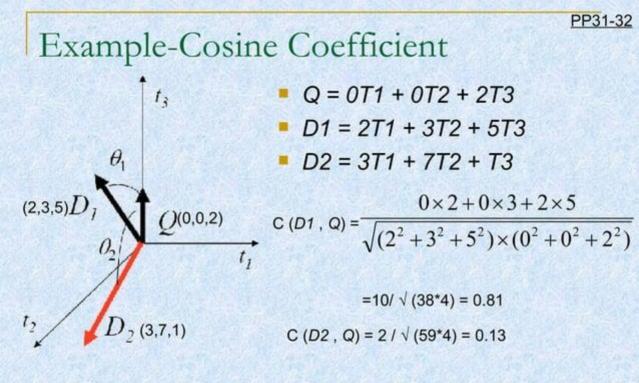
 $sim(q,d_i)$

 $D1 = 2T1 + 3T2 + 5T3, \quad (2,3,5)$

- $D2 = 3T1 + 7T2 + T3, \quad (3,7,1)$
- $Q = 0T1 + 0T2 + 2T3, \quad (0,0,2)$
- J(D1, Q) = 10 / (38+4-10) = 10/32 = 0.31
- J(D2, Q) = 2/(59+4-2) = 2/61 = 0.04

Cosine Coefficient-Cont'

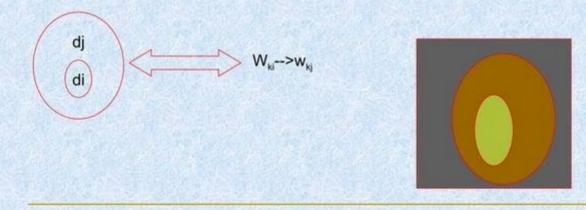
$$D_{j} = Q(q_{1}, q_{2}, \dots, q_{n})$$


$$D_{j} = Q(q_{1}, q_{2}, \dots, q_{n})$$

$$D_{j} = Q(q_{1}, q_{2}, \dots, q_{n})$$

$$I_{j} = D_{j}(d_{21}, d_{22}, \dots, d_{2n})$$

$$sim(q, d_{j}) = C(A, B) = \sqrt{PR} = \frac{|A \cap B|}{\sqrt{|A||B|}}$$


$$\approx \frac{\vec{q} \cdot \vec{d}_{j}}{|\vec{q}| \times |\vec{d}_{j}|} = \frac{\sum_{k=1}^{n} w_{kq} w_{kj}}{\sqrt{\sum_{k=1}^{n} w_{kq}^{2} \sum_{k=1}^{n} w_{kj}^{2}}}$$

Asymmetric

 $sim(q,d_{j}) = A(q,d_{j}) = \sum_{k=1}^{n} \min(w_{kq},w_{kj})$ $\sum_{k=1}^{n} W_{kq}$

Euclidean distance

Manhattan block distance

$$dis(q,d_{j}) = d_{M}(q,d_{j}) = \sum_{k=1}^{n} |w_{kq} - w_{kj}|$$

$$D_{1}$$

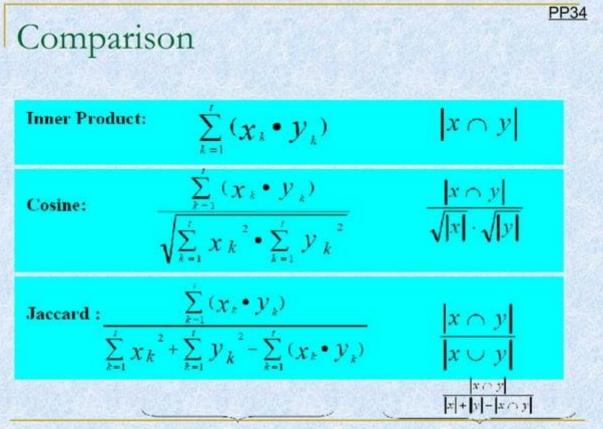
$$D_{1}$$

$$Q$$

$$\theta_{2}$$

$$D_{2}$$

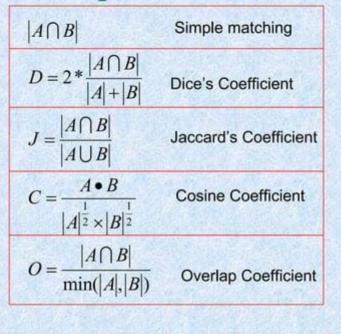
$$D_{2}$$


$$D_{2}$$

Other Measures

We may use priori/context knowledge

- For example:
- Sim(q,d_j)= α[content identifier similarity]+
 β [objective term similarity]+
 γ [citation similarity]



x and y here are vectors

x and y here are sets of keywords

Comparison

Example-Documents-Term-Query-Cont'

- D1:A search Engine for 3D Models D2:Design and Implementation of a string database query language
- D3:Ranking of documents by measures considering conceptual dependence between terms
- D4 Exploiting hierarchical domain structure to compute similarity
- D5:an approach for measuring semantic similarity between words using multiple information sources
- D6:determinging semantic similarity among entity classes from different ontologies
- D7:strong similarity measures for ordered sets of documents in information retrieval

T1:search(ing) T2:Engine(s) T3:Models T4:database T5:query T6:language T7:documents T8:measur(es,ing) **T9:conceptual** T10:dependence T11: domain T12:structure T13:similarity T14:semantic T15: ontologies T16:information T17: retrieval

PP33

Query:

Semantic similarity measures used by search engines and other information searching mechanisms

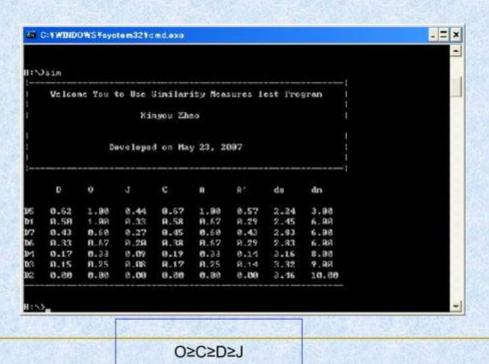
Example-Term-Document Matrix-Cont'

PP34

Matrix[q][A]

11

1.5%	T1	T2	Т3	T4	T5	T6	T7	T8	Т9	T10	T11	T12	13	T14	T15	T16	T17
D1	1	1	1	1	12	125	2018	\$3.	1		10.0						
D2				1	1	1							-	1	Sec.		00
D3			5.7	83		63	1	1	1	1	12.0						115
D4							28				1	1	1			19.00	
D5			19		N.			1					1	1		1	
D6					2.4	57		1.2	0		12		1	1	1		
D7			New York			See.	1	1			10.0		1			1	1
Q	2	1						1					1	1		1	


PP30, PP34

Dice coefficient

$$D(D1,q) \cong \frac{\sum_{k=1}^{n} w_{kq} w_{k1}}{\alpha \sum_{k=1}^{n} w_{kq}^{2} + (1-\alpha) \sum_{k=1}^{n} w_{k1}^{2}} (\alpha = \frac{1}{2}) = \frac{2 \sum_{k=1}^{n} w_{kq} w_{k1}}{\sum_{k=1}^{n} w_{kq}^{2} + \sum_{k=1}^{n} w_{k1}^{2}}$$

$$=\frac{2*(2*1+1*1+0*1+0*0+...+0*1+0*0)}{(2*2+1*1+...+0*0)+(1*1+1*1+...+0*0)}$$
$$=\frac{2*(2+1)}{9+3}=\frac{6}{12}=0.5$$

PP34

Current Applications

Multi-Dimensional Modeling
Hierarchical Clustering
Bioinformatics