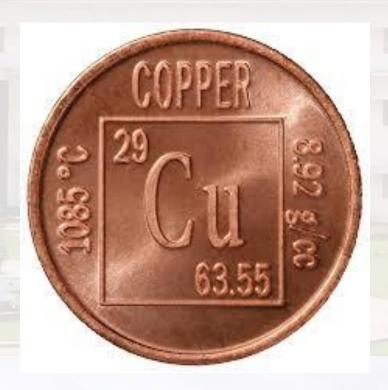


UNIT IV FERROUS AND NON FERROUS METALS

Cu alloys -Aluminium and Al -Cu -Precipitation Strengthening Treatment

Engineering Materials and Metallurgy

KARTHICK B


ASSISTANT PROFESSOR / MECHANICAL ENGG

Copper

- Mostly used in Non Ferrous Metals.
- Melting Point: 1083 deg C
- Very Good Corrosion Resistance

Properties

- High Electrical Conductivity
- High Thermal Conductivity
- Good Corrosion resistance
- Soft, Ductile and Malleable.
- Can be hot worked and cold worked but can't be welded

Applications

- Power cables
- □ Telephone cables
- Circuit boards
- Connectors
- □ Domestic water tanks and utensils
- ☐ For manufacturing brass and bronze

Copper Alloys

- Posses the following Characteristics
 - High Electrical Conductivity
 - High Thermal Conductivity
 - Good Corrosion resistance
 - Soft, Ductile and Malleable.
 - Can be hot worked and cold worked but can't be welded

Cu Alloys

- Brass (Cu Zn Alloys)
- Bronze (Cu-Tin Alloys)
- Gun Metal (Cu Tin Zn Alloys)
- Cupro Nickel (Cu Ni Alloys)
 - Tellurium → Very Good Machinability
 - Cadmium → Increase in Strength and little loss in Conductivity
 - Beryllium or Cr → High Strength alloys.

Brass

- Upto 36 % Zn \rightarrow single phase solid solution \rightarrow a brass.
- More 36% Zn \rightarrow two phase solid solution $\rightarrow \alpha$ β brass.
- α brass \rightarrow soft, ductile and easily cooled worked.
- $\alpha \beta$ brass \rightarrow stronger than α brass

Characteristics

- Stronger than Cu
- Low Thermal and Electrical Conductivity than Cu.
- Cast into moulds and drawn into wires and rolled into sheets.
- 1-3% of Pb increases Machining Properties.
- Color: Reddish to White depend upon Zinc %.

- Gliding Brass → Jewellery works.
- Cartridge Brass → Mfg Cartridge and shell
- Std Brass → Screws, rivets, tubes.
- Muntz Brass → Extruding Rods, tubes, heat exchanger plates.
- Naval Brass → Marine Structural uses.
- Admirality Brass → Condensers, Pump impellers.

Bronze

- High strength with Good Corrosion than brass.
- Strength increase with Tin content.
- But Tin Content is below 12 % because it tends to be brittle.
- Rolled into wires, rods and sheets.

Types

- Bell Bronze → Making Bells
- Phosphor Bronze → Pumps parts, lining, springs.
- Si Bronze → Boiler parts, die cast parts, marine applications.
- Al Bronze \rightarrow cams, rollers etc.
- Coinage bronze → making Cu coins
- Leaded Bronze → Bearing alloys.

Gun Metal

- Zinc acts as deoxidized to increase fluidity.
- Lead is added to improve castability and machinability.
- Cheaper.

Types

- Admirality Gun metal → Pumps, valves, castings.
- Leaded Gun Metal → Hydraulic gears, valves, etc.

- Cu and Ni have unlimited Solubility.
- They are ductile and malleable.

- Hot or Cold worked.
- Shaped by forging, pressing, drawing, spinning.

Types

- Cupronickel → Salt water piping, condenser tubes and bullet envelope.
- Monel metal → pump fittings, sea water exposed parts, foodhandling plants.
- 'K' Monel → motor boat propeller shafts.



Aluminium Characteristics

- Light weight
- High Thermal and Electrical Conductivity
- Excellent Corrosion resistance
- Non Toxicity
- Low Sp.Gravity
- High Strength to Weight ratio.

Types

• Heat Treatable Al Alloys:

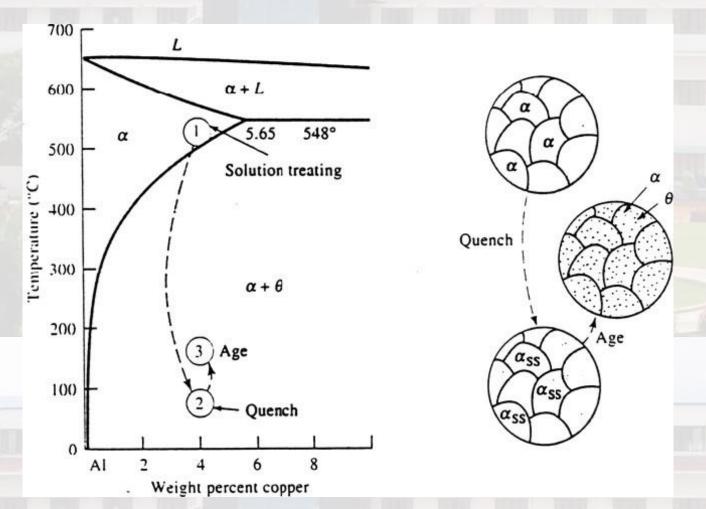
- Al Cu Alloys
 - Al Cu Ni Alloys
 - Al Mg Si Alloys
 - Al Zn Cu alloys
 - Al Li Alloys.

• Non Heat Treatable Alloys:

- Al Mn Alloys
- Al MgAlloys
- Al Si Alloys.
- ➤ Al Cu alloys
- Duralumin
- YAlloy.

Precipitation Strengthening

- Also Known as Age Hardening,
- It is used to improve the physical properties by solid state reaction.
- Most applicable for Al, Mg, Ni.
- Ex:Al Cu, Cu Be, Cu Tin, Mg Al.
- In this Process hardening takes place because the fine particles of the new phase are formed.



- Its is explained with Al -4% Cu Alloy(Duralumin).
- Steps
 - > Solution Treatment
 - > Quenching
 - > Ageing.

Al-Cu phase diagram showing three steps in Precipitation Hardening

Solution treatment

- Heating above the solvus temperature to obtain solid solution
- Hold until homogenous Solid solution
- This step dissolves the θ precipitate and reduces any segregation in original alloy.
- This treatment is done at the temperature range of 500°C and 548°C

Quenching

- After ST → Rapid Quenched.
- On rapid cooling, there is no sufficient time for diffusion of Cu atoms to form precipitate particles.

- Hence supersaturated αss (containing excess Cu) is obtained at RT.
- Supersaturated αss is unstable.

Ageing

- αss is heated below the solvus temperature.
- At this ageing temp diffusion of ass may takes place and precipitate particles are formed.
- By holding at this same temperature for a sufficient time $\alpha + \text{CuAl}_2(\theta)$ is formed.
- This CuAl₂ increases the hardness.

THANK YOU